Fish Physiology and Biochemistry

, Volume 43, Issue 6, pp 1747–1759 | Cite as

Ammonia exposure and subsequent recovery trigger oxidative stress responses in juveniles of Brazilian flounder Paralichthys orbignyanus

  • Lucas Campos Maltez
  • Giovanna Rodrigues Stringhetta
  • Alain Danilo Enamorado
  • Marcelo Hideo Okamoto
  • Luis Alberto Romano
  • José María Monserrat
  • Luís André Sampaio
  • Luciano GarciaEmail author


The effects of ammonia exposure and recovery on oxidative stress parameters and histology of juvenile Brazilian flounder Paralichthys orbignyanus were evaluated. The fish were exposed to 0.12, 0.28 and 0.57 mg NH3-N L−1, plus a control, for 10 days followed by the same recovery time in ammonia-free water. Gill, liver and muscle samples (n = 9) were collected after 1, 5 and 10 days of exposure and after recovery for oxidative stress analysis (antioxidant capacity against peroxyl radicals (ACAP); glutathione S-transferase (GST) activity; lipoperoxidation levels measured through thiobarbituric acid reactive substances (TBARS) content). For histological assessment, gill, liver and brain samples were collected. Exposure to all NH3-N concentrations induced different time- and dose-dependent changes in oxidative stress parameters. Reduced antioxidant capacity of the liver and muscle and enhanced TBARS levels in the gills and liver were demonstrated. Differently, a high ammonia concentration elicited lower hepatic TBARS levels. Enhanced GST activity in all organs and increased antioxidant capacity of the gills were also observed. No ammonia-induced histopathological effects were demonstrated. After recovery, most parameters (liver ACAP, GST activity in the muscle and liver and TBARS in the gills) returned to baseline levels. However, liver TBARS and gill GST activity remained altered 0.57 mg NH3-N L−1 treatment. The recovery period also led to a decrease in gill antioxidant capacity and an increase in muscle antioxidant capacity. In conclusion, a concentration of 0.12 mg NH3-N L−1 induces oxidative stress and antioxidant responses in juvenile Brazilian flounder. Moreover, a 10-day recovery period is not sufficient to restore fish homeostasis.


Nitrogen compound Lipid peroxidation Antioxidant system Glutathione S-transferase Histology 



This study was supported by research funds from the Conselho Nacional de Pesquisa e Desenvolvimento Científico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The authors are grateful to CNPq for productivity research fellowships provided for L. Garcia, L. Sampaio, L. Romano and J. Monserrat, and to CAPES for a PhD scholarship provided for MSc. Lucas C. Maltez.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ackerman PA, Wicks BJ, Iwama GK, Randall DJ (2006) Low levels of environmental ammonia increase susceptibility to disease in chinook salmon smolts. Physiol Biochem Zool 79:695–707. doi: 10.1086/504615 CrossRefPubMedGoogle Scholar
  2. Amado LL, Garcia ML, Ramos PB, Freitas RF, Zafalon B, Ferreira JL, Yunes JS, Monserrat JM (2009) A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: application to evaluate microcystins toxicity. Sci Total Environ 407:2115–2123. doi: 10.1016/j.scitotenv.2008.11.038 CrossRefPubMedGoogle Scholar
  3. Baldisserotto B, Martos-Sitcha JA, Menezes CC, Toni C, Prati RL, Garcia LO, Salbego J, Mancera JM, Martínez-Rodríguez G (2014) The effects of ammonia and water hardness on the hormonal, osmoregulatory and metabolic responses of the freshwater silver catfish Rhamdia quelen. Aquat Toxicol 152:341–352. doi: 10.1016/j.aquatox.2014.04.023
  4. Bendschneider K, Robinson RJ (1952) A new spectrophotometric method for the determination of nitrite in sea water. J Mar Res 11:87–96Google Scholar
  5. Bianchini A, Wasielesky W, Filho KC (1996) Toxicity of nitrogenous compounds to juveniles of flatfish Paralichthys orbignyanus. Bull Environ Contam Toxicol 56:453–459. doi: 10.1007/s001289900065 CrossRefPubMedGoogle Scholar
  6. Blanchette B, Feng X, Singh BR (2007) Marine glutathione S-transferases. Mar Biotechnol 9:513–542. doi: 10.1007/s10126-007-9034-0 CrossRefPubMedGoogle Scholar
  7. Bolasina SN (2011) Stress response of juvenile flounder (Paralichthys orbignyanus, Valenciennes 1839), to acute and chronic stressors. Aquaculture 313:140–143. doi: 10.1016/j.aquaculture.2011.01.011 CrossRefGoogle Scholar
  8. Carvalho-Neta RN, Abreu-Silva AL (2013) Glutathione S-transferase as biomarker in Sciades herzbergii (Siluriformes: Ariidae) for environmental monitoring: the case study of São Marcos Bay, Maranhão, Brazil. Lat Am J Aquat Res 41:217–225. doi: 10.3856/vol41-issue2-fulltext-2 Google Scholar
  9. Cheng CH, Yang FF, Ling RZ, Liao SA, Miao YT, Ye CX, Wang AL (2015) Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Aquat Toxicol 164:61–71. doi: 10.1016/j.aquatox.2015.04.004 CrossRefPubMedGoogle Scholar
  10. Ching B, Chew SF, Wong WP, Ip YK (2009) Environmental ammonia exposure induces oxidative stress in gills and brain of Boleophthalmus boddarti (mudskipper). Aquat Toxicol 95:203–212. doi: 10.1016/j.aquatox.2009.09.004 CrossRefPubMedGoogle Scholar
  11. Colt J (2002) List of spreadsheets prepared as a complement. In: Wedemeyer GA (ed) Fish hatchery management, 2nd edn. American Fish Society Publication Accessed 10 April 2013
  12. Da Rocha AM, de Freitas DP, Burns M, Vieira JP, de la Torre FR, Monserrat JM (2009) Seasonal and organ variations in antioxidant capacity, detoxifying competence and oxidative damage in freshwater and estuarine fishes from Southern Brazil. Comp Biochem Phys C Toxicol Pharmacol 150:512–520. doi: 10.1016/j.cbpc.2009.07.012 CrossRefGoogle Scholar
  13. Dong X, Zhang X, Qin J, Zong S (2013) Acute ammonia toxicity and gill morphological changes of Japanese flounder Paralichthys olivaceus in normal versus supersaturated oxygen. Aquac Res 44:1752–1759. doi: 10.1111/j.1365-2109.2012.03181.x CrossRefGoogle Scholar
  14. Eaton AD, Clesceri LS, Rice EW, Greenberg AE (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, D.C.Google Scholar
  15. Enamorado AD, Martins AC, Flores JA, Tesser MB, Caldas SS, Primel EG, Monserrat JM (2015) Biochemical responses over time in common carp Cyprinus carpio (Teleostei, Cyprinidae) during fed supplementation with α-lipoic acid. Comp Biochem Phys A Mol Integr Physiol 188:9–16. doi: 10.1016/j.cbpa.2015.05.023 CrossRefGoogle Scholar
  16. FAO–Food and Agriculture Organization of the United Nations (2016) The state of world fisheries and aquaculture—contributing to food security and nutrition for all, Rome Accessed 13 February 2017
  17. Farag AM, May T, Marty GD, Easton M, Harper DD, Little EE, Cleveland L (2006) The effect of chronic chromium exposure on the health of chinook salmon (Oncorhynchus tshawytscha). Aquat Toxicol 76:246–257. doi: 10.1016/j.aquatox.2005.09.011 CrossRefPubMedGoogle Scholar
  18. Farzad R, Inanlou DN, Cohan RA, Ghorbani M (2015) Effects of the industrial pollution on glutathione S-tranferase in the liver of rainbow trout. Bulg Chem Commun 47:720–724Google Scholar
  19. Figueiredo JL, Menezes NA (2000) Manual de peixes marinhos do sudeste do Brasil. São Paulo, Museu de Zoologia/USPGoogle Scholar
  20. Frances J, Nowak BF, Allan GL (2000) Effects of ammonia on juvenile silver perch (Bidyanus bidyanus). Aquaculture 183:95–103. doi: 10.1016/S0044-8486(99)00286-0 CrossRefGoogle Scholar
  21. Fridovich I (2004) Mitochondria: are they the seat of senescence? Aging Cell 3:13–16. doi: 10.1046/j.1474-9728.2003.00075.x CrossRefPubMedGoogle Scholar
  22. Garcia LO, Okamoto MH, Riffel AP, Saccol EM, Pavanato MA, Sampaio LA (2015) Oxidative stress parameters in juvenile Brazilian flounder Paralichthys orbignyanus (Valenciennes, 1839) (Pleuronectiformes: Paralichthyidae) exposed to cold and heat shocks. Neotrop Ichthyol 13:607–612. doi: 10.1590/1982-0224-20140148 CrossRefGoogle Scholar
  23. Gottschalk S, Zwingmann C (2009) Altered fatty acid metabolism and composition in cultured astrocytes under hyperammonemic conditions. J Neurochem 109:258–264. doi: 10.1111/j.1471-4159.2009.05985.x CrossRefPubMedGoogle Scholar
  24. Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405CrossRefPubMedGoogle Scholar
  25. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139PubMedGoogle Scholar
  26. Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, USACrossRefGoogle Scholar
  27. Hegazi MM, Attia ZI, Ashour OA (2010) Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquat Toxicol 99:118–125. doi: 10.1016/j.aquatox.2010.04.007 CrossRefPubMedGoogle Scholar
  28. Hermes-Lima M, Moreira DC, Rivera-Ingraham GA, Giraud-Billoud M, Genaro-Mattos TC, Campos ÉG (2015) Preparation for oxidative stress under hypoxia and metabolic depression: revisiting the proposal two decades later. Free Radical Bio Med 89:1122–1143. doi: 10.1016/j.freeradbiomed.2015.07.156 CrossRefGoogle Scholar
  29. Intergovernmental Oceanographic Commission (1983) Chemical methods for use in marine environmental monitoring. UNESCO, ParisGoogle Scholar
  30. Ip YK, Chew SF (2010) Ammonia production, excretion, toxicity, and defense in fish: a review. Front Physiol 1:134. doi: 10.3389/fphys.2010.00134 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kim SH, Kim JH, Park MA, Hwang SD, Kang JC (2015) The toxic effects of ammonia exposure on antioxidant and immune responses in rockfish, Sebastes schlegelii during thermal stress. Environ Toxicol Pharmacol 40:954–959. doi: 10.1016/j.etap.2015.10.006 CrossRefPubMedGoogle Scholar
  32. Klinger D, Naylor R (2012) Searching for solutions in aquaculture: charting a sustainable course. Annu Rev Environ Resour 37:247–276. doi: 10.1146/annurev-environ-021111-161531 CrossRefGoogle Scholar
  33. Kolarevic J, Takle H, Felip O, Ytteborg E, Selset R, Good CM, Baeverfjord G, Asgård T, Terjesen BF (2012) Molecular and physiological responses to long-term sub-lethal ammonia exposure in Atlantic salmon (Salmo salar). Aquat Toxicol 124:48–57. doi: 10.1016/j.aquatox.2012.07.003 CrossRefPubMedGoogle Scholar
  34. Kütter MT, Romano LA, Ventura-Lima J, Tesser MB, Monserrat JM (2014) Antioxidant and toxicological effects elicited by alpha-lipoic acid in aquatic organisms. Comp Biochem Phys C Toxicol Pharmacol 162:70–76. doi: 10.1016/j.cbpc.2014.03.008 CrossRefGoogle Scholar
  35. Li M, Gong S, Li Q, Yuan L, Meng F, Wang R (2016) Ammonia toxicity induces glutamine accumulation, oxidative stress and immunosuppression in juvenile yellow catfish Pelteobagrus fulvidraco. Comp Biochem Phys C Toxicol Pharmacol 183-184:1–6. doi: 10.1016/j.cbpc.2016.01.005 CrossRefGoogle Scholar
  36. Li M, Yu N, Qin JG, Li E, Du Z, Chen L (2014) Effects of ammonia stress, dietary linseed oil and Edwardsiella ictaluri challenge on juvenile darkbarbel catfish Pelteobagrus vachelli. Fish Shellfish Immun 38:158–165. doi: 10.1016/j.fsi.2014.03.015 CrossRefGoogle Scholar
  37. Livingstone DR (2003) Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Revue Méd Vét 154:427–430Google Scholar
  38. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30. doi: 10.1016/j.aquatox.2010.10.006 CrossRefPubMedGoogle Scholar
  39. Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175. doi: 10.1016/j.cbi.2014.10.016 CrossRefPubMedGoogle Scholar
  40. Medeiros RS, Lopez BA, Sampaio LA, Romano LA, Rodrigues RV (2016) Ammonia and nitrite toxicity to false clownfish Amphiprion ocellaris. Aquacult Int 24:985–993. doi: 10.1007/s10499-015-9965-9 CrossRefGoogle Scholar
  41. Millner R, Walsh SJ, Díaz de Astarloa JM (2005) Atlantic flatfish fisheries. In: Gibson RN (ed) Flatfishes: biology and exploitation, 1st edn. Blackwell Science, Oxford, pp 240–271CrossRefGoogle Scholar
  42. Monserrat JM, Martínez PE, Geracitano LA, Amado LL, Martins CM, Pinho GL, Chaves IS, Ferreira-Cravo M, Ventura-Lima J, Bianchini A (2007) Pollution biomarkers in estuarine animals: critical review and new perspectives. Comp Biochem Phys C Toxicol Pharmacol 146:221–234. doi: 10.1016/j.cbpc.2006.08.012 CrossRefGoogle Scholar
  43. Oakes KD, Van Der Kraak GJ (2003) Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquat Toxicol 63:447–463. doi: 10.1016/S0166-445X(02)00204-7 CrossRefPubMedGoogle Scholar
  44. Okamoto MH, Sampaio LA (2012) Sobrevivência e crescimento de juvenis do linguado Paralichthys orbignyanus criados em diferentes temperaturas. Atlântica (Rio Grande) 34:57–61. doi:10.5088/atlântica.v34i1.2710CrossRefGoogle Scholar
  45. Pan CH, Chien YH, Wang YJ (2011) Antioxidant defence to ammonia stress of characins (Hyphessobrycon eques Steindachner) fed diets supplemented with carotenoids. Aquac Nutr 17:258–266. doi: 10.1111/j.1365-2095.2009.00747.x CrossRefGoogle Scholar
  46. Paust LO, Foss A, Imsland AK (2011) Effects of chronic and periodic exposure to ammonia on growth, food conversion efficiency and blood physiology in juvenile Atlantic halibut (Hippoglossus hippoglossus L.) Aquaculture 315:400–406. doi: 10.1016/j.aquaculture.2011.03.008 CrossRefGoogle Scholar
  47. Randall DJ, Tsui TK (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17–23. doi: 10.1016/S0025-326X(02)00227-8 CrossRefPubMedGoogle Scholar
  48. Rašković B, Jarić I, Koko V, Spasić M, Dulić Z, Marković Z, Poleksić V (2013) Histopathological indicators: a useful fish health monitoring tool in common carp (Cyprinus carpio Linnaeus, 1758) culture. Cent Eur J Biol 8:975–985. doi: 10.2478/s11535-013-0220-y Google Scholar
  49. Ravindrababu G, Neeraja P (2012) Histological changes in certain tissues of fish on ambient ammonia stress and post ammonia state (recovery). Int J Adv Biol Res 2:430–435Google Scholar
  50. Rodrigues RV, Romano LA, Schwarz MH, Delbos B, Sampaio LA (2014) Acute tolerance and histopathological effects of ammonia on juvenile maroon clownfish Premnas biaculeatus (Block 1790). Aquac Res 45:1133–1139. doi: 10.1111/are.12054 CrossRefGoogle Scholar
  51. Roumieh R, Barakat A, Abdelmeguid NE, Ghanawi J, Saoud IP (2013) Acute and chronic effects of aqueous ammonia on marbled spinefoot rabbitfish, Siganus rivulatus (Forsskål 1775). Aquac Res 44:1777–1790. doi: 10.1111/j.1365-2109.2012.03188.x Google Scholar
  52. Sampaio LA, Bianchini A (2002) Salinity effects on osmoregulation and growth of the euryhaline flounder Paralichthys orbignyanus. J Exp Mar Biol Ecol 269:187–196. doi: 10.1016/S0022-0981(01)00395-1 CrossRefGoogle Scholar
  53. Sampaio LA, Freitas LS, Okamoto MH, Louzada LR, Rodrigues RV, Robaldo RB (2007) Effects of salinity on Brazilian flounder Paralichthys orbignyanus from fertilization to juvenile settlement. Aquaculture 262:340–346. doi: 10.1016/j.aquaculture.2006.09.046 CrossRefGoogle Scholar
  54. Sampaio LA, Robaldo RB, Bianchini A (2008) Hormone-induced ovulation, natural spawning and larviculture of Brazilian flounder Paralichthys orbignyanus (Valenciennes, 1839). Aquac Res 39:712–717. doi: 10.1111/j.1365-2109.2008.01923.x CrossRefGoogle Scholar
  55. Schram E, Roques JA, Abbink W, Spanings T, de Vries P, Bierman S, van de Vis H, Flik G (2010) The impact of elevated water ammonia concentration on physiology, growth and feed intake of African catfish (Clarias gariepinus). Aquaculture 306:108–115. doi: 10.1016/j.aquaculture.2010.06.005 CrossRefGoogle Scholar
  56. Schreier HJ, Mirzoyan N, Saito K (2010) Microbial diversity of biological filters in recirculating aquaculture systems. Curr Opin Biotech 21:318–325. doi: 10.1016/j.copbio.2010.03.011 CrossRefPubMedGoogle Scholar
  57. Schwaiger J, Wanke R, Adam S, Pawert M, Honnen W, Triebskorn R (1997) The use of histopathological indicators to evaluate contaminant-related stress in fish. J Aquat Ecosyst Stress Recovery 6:75–86. doi: 10.1023/A:1008212000208 CrossRefGoogle Scholar
  58. Sevcikova M, Modra H, Blahova J, Dobsikova R, Plhalova L, Zitka O, Hynek D, Kizek R, Skoric M, Svobodova Z (2016) Biochemical, haematological and oxidative stress responses of common carp (Cyprinus carpio L.) after sub-chronic exposure to copper. Vet Med 61:35–50. doi: 10.17221/8681-VETMED CrossRefGoogle Scholar
  59. Sinha AK, AbdElgawad H, Giblen T, Zinta G, De Rop M, Asard H, Blust R, De Boeck G (2014) Anti-oxidative defences are modulated differentially in three freshwater teleosts in response to ammonia-induced oxidative stress. PLoS One 9:e95319. doi: 10.1371/journal.pone.0095319 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Stoliar OB, Lushchak VI (2012) Environmental pollution and oxidative stress in fish. In: Lushchak VI (ed) Oxidative stress-environmental induction and dietary antioxidants. InTech. Accessed 2 February 2017
  61. Sun H, Wang W, Li J, Yang Z (2014) Growth, oxidative stress responses, and gene transcription of juvenile bighead carp (Hypophthalmichthys nobilis) under chronic-term exposure of ammonia. Environ Toxicol Chem 33:1726–1731. doi: 10.1002/etc.2613 CrossRefPubMedGoogle Scholar
  62. Velisek J, Stara A, Kolarova J, Svobodova Z (2011) Biochemical, physiological and morfological responses in common carp (Cyprinus carpio L.) after long-term exposure to terbutryn in real environmental concentration. Pestic Biochem Phys 100:305–313. doi: 10.1016/j.pestbp.2011.05.004 CrossRefGoogle Scholar
  63. Wasielesky W, Bianchini A, Miranda FK (1998) Tolerancia a la temperatura de juveniles de lenguado Paralichthys orbignyanus. Frente Marítimo 17:43–48Google Scholar
  64. Wasielesky W, Bianchini A, Santos MH, Poersch LH (1997) Tolerance of juvenile flatfish Paralichthys orbignyanus to acid stress. J World Aquacult Soc 28:202–204. doi: 10.1111/j.1749-7345.1997.tb00857.x CrossRefGoogle Scholar
  65. Wilhelm Filho D, Giulivi C, Boveris A (1993) Antioxidant defences in marine fish-I. Teleosts. Comp Biochem Phys C Pharmacol Toxicol Endocrinol 106:409–413. doi: 10.1016/0742-8413(93)90154-D CrossRefGoogle Scholar
  66. Wilkie MP, Wood CM (1996) The adaptations of fish to extremely alkaline environments. Comp Biochem Phys B Biochem Mol Biol 113:665–673. doi: 10.1016/0305-0491(95)02092-6 CrossRefGoogle Scholar
  67. Yang W, Sun H, Xiang F, Yang Z, Chen Y (2011) Response of juvenile crucian carp (Carassius auratus) to long-term ammonia exposure: feeding, growth, and antioxidant defenses. J Freshw Ecol 26:563–570. doi: 10.1080/02705060.2011.570944 Google Scholar
  68. Yang W, Xiang F, Liang L, Yang Z (2010a) Toxicity of ammonia and its effects on oxidative stress mechanisms of juvenile crucian carp (Carassius auratus). J Freshw Ecol 25:297–302. doi: 10.1080/02705060.2010.9665080 CrossRefGoogle Scholar
  69. Yang W, Xiang F, Sun H, Chen Y, Minter E, Yang Z (2010b) Changes in the selected hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian carp Carassius auratus during elevated ammonia exposure and the post-exposure recovery. Biochem Syst Ecol 38:557–562. doi: 10.1016/j.bse.2010.06.005 CrossRefGoogle Scholar
  70. Zhang L, Feng L, Jiang WD, Liu Y, Jiang J, Li SH, Tang L, Kuang SY, Zhou XQ (2016) The impaired flesh quality by iron deficiency and excess is associated with increasing oxidative damage and decreasing antioxidant capacity in the muscle of young grass carp (Ctenopharyngodon idellus). Aquac Nutr 22:191–201. doi: 10.1111/anu.12237 CrossRefGoogle Scholar
  71. Zivna D, Plhalova L, Praskova E, Stepanova S, Siroka Z, Sevcikova M, Blahova J, Bartoskova M, Marsalek P, Skoric M, Svobodova Z (2013) Oxidative stress parameters in fish after subchronic exposure to acetylsalicylic acid. Neuroendocrinol Lett 34:116–122PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Lucas Campos Maltez
    • 1
  • Giovanna Rodrigues Stringhetta
    • 1
  • Alain Danilo Enamorado
    • 2
  • Marcelo Hideo Okamoto
    • 3
  • Luis Alberto Romano
    • 4
  • José María Monserrat
    • 2
  • Luís André Sampaio
    • 3
  • Luciano Garcia
    • 1
    Email author return OK on get
  1. 1.Laboratório de Aquacultura Continental, Instituto de OceanografiaUniversidade Federal do Rio Grande – FURGRio GrandeBrazil
  2. 2.Laboratório de Bioquímica Funcional de Organismos AquáticosUniversidade Federal do Rio Grande – FURGRio GrandeBrazil
  3. 3.Laboratório de Piscicultura Estuarina e Marinha, Instituto de OceanografiaUniversidade Federal do Rio Grande – FURGRio GrandeBrazil
  4. 4.Laboratório de Imunologia e Patologia de Organismos Aquáticos, Instituto de OceanografiaUniversidade Federal do Rio Grande – FURGRio GrandeBrazil

Personalised recommendations