Advertisement

Fish Physiology and Biochemistry

, Volume 43, Issue 6, pp 1707–1720 | Cite as

Effects of stocking density on lipid deposition and expression of lipid-related genes in Amur sturgeon (Acipenser schrenckii)

  • Yuanyuan Ren
  • Haishen Wen
  • Yun Li
  • Jifang Li
  • Feng He
  • Meng Ni
Article

Abstract

To investigate the correlation between lipid deposition variation and stocking density in Amur sturgeon (Acipenser schrenckii) and the possible physiological mechanism, fish were conducted in different stocking densities (LSD 5.5 kg/m3, MSD 8.0 kg/m3, and HSD 11.0 kg/m3) for 70 days and then the growth index, lipid content, lipase activities, and the mRNA expressions of lipid-related genes were examined. Results showed that fish subjected to higher stocking density presented lower final body weights (FBW), specific growth ratio (SGR), and gonad adipose tissue index (GAI) (P < 0.05). Lower lipid content was observed in the liver, gonad adipose tissue and muscle in sturgeons held in HSD group (P < 0.05). The serum concentrations of triglyceride (TG), total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C) decreased significantly with increasing stocking density, while no significant change was observed for low-density lipoprotein cholesterol (LDL-C). Furthermore, the cDNAs encoding lipoprotein lipase (LPL) and hepatic lipase (HL) were isolated in Amur sturgeon, respectively. The full-length LPL cDNA was composed of 1757 bp with an open reading frame of 501 amino acids, while the complete nucleotide sequences of HL covered 1747 bp encoding 499 amino acids. In the liver, the activities and mRNA levels of LPL were markedly lower in HSD group, which were consistent with the variation tendency of HL. Fish reared in HSD group also presented lower levels of activities and mRNA expression of LPL in the muscle and gonad. Moreover, the expressions of peroxisome proliferator-activated receptor α (PPARα) in both the liver and skeletal muscle were significantly upregulated in HSD group. Overall, the results indicated that high stocking density negatively affects growth performance and lipid deposition of Amur sturgeon to a certain extent. The downregulation of LPL and HL and the upregulation of PPARα may be responsible for the lower lipid distribution of Amur sturgeon in higher stocking density.

Keywords

Amur sturgeon Stocking density Lipid deposition Lipases Gene expression 

Notes

Acknowledgments

This research was funded by the Chinese Special Fund for Agro-scientific Research in the Public Interest (201003055). The authors also thank the Xunlong fisheries farm for providing the Amur sturgeons for the experiments.

References

  1. Adams CE, Turnbull JF, Bell A, Bron JE, Huntingford FA (2007) Multiple determinants of welfare in farmed fish: stocking density, disturbance, and aggression in Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 64(2):336–344CrossRefGoogle Scholar
  2. Albalat A, Sanchez-Gurmaches J, Gutierrez J, Navarro I (2006) Regulation of lipoprotein lipase activity in rainbow trout (Oncorhynchus mykiss) tissues. Gen Comp Endocrinol 146(3):226–235CrossRefPubMedGoogle Scholar
  3. Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104(3):199–235CrossRefGoogle Scholar
  4. Basrur TV, Longland R, Wilkinson RJ (2010) Effects of repeated crowding on the stress response and growth performance in Atlantic salmon (Salmo salar). Fish Physiol Biochem 36:445–450CrossRefPubMedGoogle Scholar
  5. Bittencourt F, Feiden A, Signor AA, Boscolo WR, Lorenz EK, Maluf ML (2010) Stocking density and erythrocytic parameters of pacu raised in cages. Rev Bras Zootecn 39(11):2323–2329CrossRefGoogle Scholar
  6. Bouraoui L, Cruz-Garcia L, Gutiérrez J, Capilla E, Navarro I (2012) Regulation of lipoprotein lipase gene expression by insulin and troglitazone in rainbow trout (Oncorhynchus mykiss) adipocyte cells in culture. Comp Biochem Physiol Pt A 161(1):83–88CrossRefGoogle Scholar
  7. Braissant OL, Foufelle F, Scotto CH, Dauça MI, Wahli WA (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha,-beta, and-gamma in the adult rat. Endocrinology 137(1):354–366CrossRefPubMedGoogle Scholar
  8. Cheng HL, Xin W, Peng YX, Meng XP, Sun SP, Shi XY (2009) Molecular cloning and tissue distribution of lipoprotein lipase full-length cdna from pengze crucian carp (Carassius auratus var. pengze). Comp Biochem Physiol Pt B 153(1):109–115CrossRefGoogle Scholar
  9. Corcoran J, Winter MJ, Lange A, Cumming R, Owen SF, Tyler CR (2015) Effects of the lipid regulating drug clofibric acid on PPARα-regulated gene transcript levels in common carp (Cyprinus carpio) at pharmacological and environmental exposure levels. Aquat Toxicol 161:127–137CrossRefPubMedPubMedCentralGoogle Scholar
  10. Costas B, Aragão C, Mancera JM, Dinis MT, Conceição LEC (2008) High stocking density induces crowding stress and affects amino acid metabolism in Senegalese sole Solea senegalensis (Kaup 1858) juveniles. Aquaculture 39:1–9CrossRefGoogle Scholar
  11. Heras VDL, Martos-Sitcha JA, Yúfera M, Mancera JM, Martínez-Rodríguez G (2015) Influence of stocking density on growth, metabolism and stress of thick-lipped grey mullet (Chelon labrosus) juveniles. Aquaculture 448:29–37CrossRefGoogle Scholar
  12. De Oliveira EG, Pinheiro AB, de Oliveira VQ, da Silva AR, de Moraes MG, Rocha ÍR, de Sousa RR, Costa FH (2013) Effects of stocking density on the performance of juvenile pirarucu (Arapaima gigas) in cages. Aquaculture 370:96–101Google Scholar
  13. Ellis T, North B, Scott AP, Bromage NR, Porter M, Gadd D (2002) The relationships between stocking density and welfare in farmed rainbow trout. J Fish Biol 61(3):493–531CrossRefGoogle Scholar
  14. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509PubMedGoogle Scholar
  15. Herrera M, Ruiz-Jarabo I, Hachero I, Vargas-Chacoff L, Amo A, Mancera JM (2012) Stocking density affects growth and metabolic parameters in the brill (Scophthalmus rhombus). Aquacult Int 20(6):1041–1052CrossRefGoogle Scholar
  16. Hocquette JF, Graulet B, Olivecrona T (1998) Lipoprotein lipase activity and mRNA levels in bovine tissues. Comp Biochem Physiol Pt B 121:201–212CrossRefGoogle Scholar
  17. Hwang HK, Son MH, Myeong JI, Kim CW, Min BH (2014) Effects of stocking density on the cage culture of Korean rockfish (Sebastes schlegeli). Aquaculture 434:303–306CrossRefGoogle Scholar
  18. Ibáñez AJ, Peinado-Onsurbe J, Sánchez E, Cerdá-Reverter JM, Prat F (2008) Lipoprotein lipase (LPL) is highly expressed and active in the ovary of European sea bass (Dicentrarchus labrax L.) during gonadal development. Comp Biochem Physiol Pt A 150(3):347–354CrossRefGoogle Scholar
  19. Jodun WA, Millard MJ, Mohler J, Jodun WA, Millard MJ, Mohler J (1993) The effect of rearing density on growth, survival, and feed conversion of juvenile Atlantic sturgeon. North Am J Aquac 463(64):10–15Google Scholar
  20. Kaneko G, Yamada T, Han Y, Hirano Y, Khieokhajonkhet A, Shirakami H (2013) Differences in lipid distribution and expression of peroxisome proliferator-activated receptor gamma and lipoprotein lipase genes in torafugu and red seabream. Gen Comp Endocr 184(3):51–60CrossRefPubMedGoogle Scholar
  21. Li DP, Liu ZD, Xie CX (2012) Effect of stocking density on growth and serum concentrations of thyroid hormones and cortisol in Amur sturgeon, Acipenser schrenckii. Fish Physiol Biochem 38:511–520CrossRefPubMedGoogle Scholar
  22. Liang XF, Bai JJ, Lao HH, Li GS, Zhou TH, Ogata HY (2003) Nutritional regulationof lipoprotein lipase gene expression and visceral fat deposition in red sea bream (Pagrus major). Oceanol Limnol Sin 34:625–631Google Scholar
  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  24. Lupatsch I, Santos GA, Schrama JW, Verreth JA (2010) Effect of stocking density and feeding level on energy expenditure and stress responsiveness in European sea bass Dicentrarchus labrax. Aquaculture 298(3):245–250CrossRefGoogle Scholar
  25. Marco PD, Finoia MG, Massari A (2008) Physiological responses of European sea bass Dicentrarchus labrax to different stocking densities and acute stress challenge. Aquaculture 275:319–328CrossRefGoogle Scholar
  26. Menezes C, Ruiz-Jarabo I, Martos-Sitcha JA, Toni C, Salbego J, Becker A (2015) The influence of stocking density and food deprivation in silver catfish (Rhamdia quelen): a metabolic and endocrine approach. Aquaculture 435:257–264CrossRefGoogle Scholar
  27. Millán-Cubillo AF, Martos-Sitcha JA, Ruiz-Jarabo I, Cárdenas S, Mancera JM (2016) Low stocking density negatively affects growth, metabolism and stress pathways in juvenile specimens of meagre (Argyrosomus regius, Asso 1801). Aquaculture 20(451):87–92CrossRefGoogle Scholar
  28. Montero D, Izquierdo MS, Tort L, Robaina L, Vergara JM (1999) High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles. Fish Physiol Biochem 20:53–60CrossRefGoogle Scholar
  29. Montero D, Robaina LE, Socorro J, Vergara JM, Tort L, Izquierdo MS (2001) Alteration of liver and muscle fatty acid composition in gilthead seabream (Sparus aurata) juveniles held at high stocking density and fed an essential fatty acids deficient diet. Fish Physiol Biochem 24:63–72CrossRefGoogle Scholar
  30. Morais S, Pratoomyot J, Torstensen BE, Taggart JB, Guy DR, Bell JG, Tocher DR (2011) Diet× genotype interactions in hepatic cholesterol and lipoprotein metabolism in Atlantic salmon (Salmo salar) in response to replacement of dietary fish oil with vegetable oil. Brit J Nutr 106:1457–1469CrossRefPubMedGoogle Scholar
  31. Mukherjee M (2003) Human digestive and metabolic lipases—a brief review. J Mol Catal 22:369–376CrossRefGoogle Scholar
  32. Ni M, Wen HS, Li JF, Chi ML, Bu Y, Ren YY (2014) Effects of stocking density on mortality, growth and physiology of juvenile Amur sturgeon ( Acipenser schrenckii ). Aquac Res:1–9Google Scholar
  33. Oku H, Koizumi N, Okumura T, Kobayashi T, Umino T (2006) Molecular characterization of lipoprotein lipase, hepatic lipase and pancreatic lipase genes: effects of fasting and refeeding on their gene expression in red sea bream Pagrus major. Comp Biochem Physiol A 145(2):168–178CrossRefGoogle Scholar
  34. Pawlak M, Lefebvre P, Staels B (2015) Molecular mechanism of pparα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62(3):720–733CrossRefPubMedGoogle Scholar
  35. Peng M, Xu W, Mai K, Zhou H, Zhang Y, Liu FZ (2014) Growth performance, lipid deposition and hepatic lipid metabolism related gene expression in juvenile turbot (Scophthalmus maximus L.) fed diets with various fish oil substitution levels by soybean oil. Aquaculture 433(1):442–449CrossRefGoogle Scholar
  36. Perez-Sanchez J, Borrel M, Bermejo-Nogales A, Benedito-Palos L, Saera-Vila A, Calduch-Giner JA, Kaushik S (2013) Dietary oils mediate cortisol kinetics and the hepatic mRNA expression profile of stress-responsive genes in gilthead sea bream (Sparus aurata) exposed to crowding stress. Implications on energy homeostasis and stress susceptibility. Comp Biochem Physiol Part D 8:123–130Google Scholar
  37. Petochi BT, Marco PD, Donadelli V, Longobardi A, Corsalini I, Bertotto D (2011) Sex and reproductive stage identification of sturgeon hybrids (Acipenser naccarii × Acipenser baerii) using different tools: ultrasounds, histology and sex steroids. J Appl Ichthyol 27(2):637–642CrossRefGoogle Scholar
  38. Philippe L, Giulia C, Jean-Charles F, Bart S (2006) Sorting out the roles of ppar alpha in energy metabolism and vascular homeostasis. J Clin Invest 116(3):571–580CrossRefGoogle Scholar
  39. Rowland SJ, Mifsud C, Nixon M, Boyd P (2006) Effects of stocking density on the performance of the australian freshwater silver perch (Bidyanus bidyanus) in cages. Aquaculture 253(s 1–4):301–308CrossRefGoogle Scholar
  40. Saera-Vila A, Calduch-Giner JA, Gómez-Requeni P, Médale F, Kaushik S, Pérez-Sánchez J (2005) Molecular characterization of gilthead sea bream (Sparus aurata) lipoprotein lipase. Transcriptional regulation by season and nutritional condition in skeletal muscle and fat storage tissues. Comp Biochem Physiol B 142(2):224–232CrossRefPubMedGoogle Scholar
  41. Santamarina-Fojo S, Brewer HB (1994) Lipoprotein lipase: structure, function and mechanism of action. Int J Clin Exp Med 24(3):143–147Google Scholar
  42. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J (1996) PPAR alpha and PPAR gamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 15:5336–5348PubMedPubMedCentralGoogle Scholar
  43. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  44. Telli GS, Ranzani-Paiva MJT, Dias DDC, Sussel FR, Ishikawa CM, Tachibana L (2014) Dietary administration of bacillus subtilis on hematology and non-specific immunity of Nile tilapia Oreochromis niloticus raised at different stocking densities. Fish Shellfish Immu 39(2):305–311CrossRefGoogle Scholar
  45. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tolussi CE, Hilsdorf AW, Caneppele D, Moreira RG (2010) The effects of stocking density in physiological parameters and growth of the endangered teleost species piabanha, Brycon insignis (Steindachner, 1877). Aquaculture 310(1):221–228CrossRefGoogle Scholar
  47. Vargas-Chacoff L, Martínez D, Oyarzún R, Nualart D, Olavarría V, Yáñez A, Bertrán C, Ruiz-Jarabo I, Mancera JM (2014) Combined effects of high stocking density and Piscirickettsia salmonis treatment on the immune system, metabolism and osmoregulatory responses of the sub-Antarctic Notothenioid fish Eleginops maclovinus. Fish Shellfish Immun 40(2):424–434CrossRefGoogle Scholar
  48. Vijayan MM, Ballantyne JS, Leatherland JF (1990) High stocking density alters the energy metabolism of brook charr, Salvelinus fontinalis. Aquaculture 88:371–381CrossRefGoogle Scholar
  49. Wang CS, Hartsuch J, McConathy WJ (1992) Structure and functional properties of lipoprotein lipase. Biochim Biophys Acta 1123:1–17CrossRefPubMedGoogle Scholar
  50. Wong H, Schotz MC (2002) The lipase gene family. J Lipid Res 43:993–999CrossRefPubMedGoogle Scholar
  51. Zhan Y, Gui Y, Li S, Wang W (2011) Cloning, identification and accurate normalization expression analysis of PPARα gene by GeNorm in Megalobrama amblycephala. Fish Shellfish Immun 31:462–468CrossRefGoogle Scholar
  52. Zheng K, Zhu X, Han D, Yang Y, Lei W, Xie S (2010) Effects of dietary lipid levels on growth, survival and lipid metabolism during early ontogeny of Pelteobagrus vachelli larvae. Aquaculture 299:121–127CrossRefGoogle Scholar
  53. Zhu T, Ai Q, Mai K., Xu W, Zhou H, Liu FZ (2014) Feed intake, growth performance and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fed defatted fish meal diets with graded levels of cholesterol. Aquaculture s428–429(2):290-296Google Scholar
  54. Zhuang P, Kynard B, Zhang L (2002) Overview of biology and aquaculture of Amur sturgeon (Acipenser schrenckii) in China. J Appl Ichthyol 18:659–664CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Yuanyuan Ren
    • 1
  • Haishen Wen
    • 1
  • Yun Li
    • 1
  • Jifang Li
    • 1
  • Feng He
    • 1
  • Meng Ni
    • 1
  1. 1.Key Laboratory of Mariculture, Ministry of EducationOcean University of ChinaQingdaoPeople’s Republic of China

Personalised recommendations