Fish Physiology and Biochemistry

, Volume 43, Issue 6, pp 1645–1655 | Cite as

Immunotoxic responses of chronic exposure to cypermethrin in common carp

Article

Abstract

In the current study, laboratory evaluations were made to assess the immunomodulatory effect of cypermethrin on fingerlings of common carp (Cyprinus carpio L.). Results showed that 96-h LC50 of cypermethrin in common carp was estimated at 0.85 μg/L. Fish were exposed for 21 days to cypermethrin at three sub-lethal concentrations of 0.042, 0.085, and 0.17 μg/L that represented 5, 10, and 20%, respectively, of the 96-h LC50 of the pesticide for this fish species. Blood samples were taken after 7, 14, and 21 days of exposure. Immunological indices and resistance against bacterial infection were determined. Compared to the control group, the fish exposed to cypermethrin showed a significant increase in neutrophil ratio but exhibited a significant decrease in leukocyte number and lymphocyte ratio in treatments exposed to 0.17 and/or 0.085 μg/L after 21 days of exposure (p < 0.05). Serum protein level was significantly decreased in group exposed to 0.17 μg/L on day 14 and also in groups exposed to 0.085 and 0.17 μg/L on day 21 (p < 0.05). Immunoglobulin value was significantly reduced in groups exposed to 0.085 and 0.17 μg/L after 21 days of exposure (p < 0.05). Serum lysozyme activity and phagocytic activity were significantly decreased following exposure to 0.17 μg/L determined on days 14 and 21, post-exposure (p < 0.05). Mortality rate following the challenge with Aeromonas hydrophila significantly increased in fish exposed to 0.17 μg/L of cypermethrin. Overall, the present results indicate severe immunotoxicological effects of cypermethrin in common carp. Therefore, the use of cypermethrin in the proximities of common carp farms should be carefully considered.

Keywords

Cypermethrin toxicity Immunological parameters Cyprinus carpio Lysozyme Phagocytic activity Disease resistance 

Notes

Acknowledgements

This study was supported by the Aquatic Animal Health and Diseases Department, School of Veterinary Medicine, Shiraz University, through a research grant to the first author.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Siwicki, AK, Anderson DP (1993) Immunostimulation in fish: measuring the effects of stimulants by serological and immunological methods. Abstract. Symposium on fish immunology. Lysekil, Sweden, Nordic Society of Fish Immunology (NOFFI). Abstract 24Google Scholar
  2. Alishahi M, Mohammadi A, Mesbah M, Razi Jalali M (2014) Haemato-immunological responses to diazinon chronic toxicity in Barbus sharpeyi. Iran J Fish Sci 15(2):870–885Google Scholar
  3. Alkahem HF (1994) The toxicity of nickel and the effects of sub-lethal levels on haematological parameters and behaviour of the fish, Orechromis niloticus. J Univ Kuwait (Sci) 21:243–252Google Scholar
  4. Aydin R, Koprucu K, Dorucu M, Koprucu SS, Pala M (2005) Acute toxicity of synthetic pyrethroid cypermethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Aquac Int 13:451–458. doi: 10.1007/s10499-005-0615-5 CrossRefGoogle Scholar
  5. Banaee M, Sureda A, Mirvaghefi AR, Ahmadi K (2011) Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pestic Biochem Physiol 99(1):1–6. doi: 10.1016/j.pestbp.2010.09.001 CrossRefGoogle Scholar
  6. Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1:3–26. doi: 10.1016/0959-8030(91)90019-G CrossRefGoogle Scholar
  7. Betoulle S, Duchiron C, Deschaux P (2000) Lindane differently modulates intracellular calcium levels in two populations of rainbow trout immune cells: head kidney phagocytes and peripheral blood leucocytes. Toxicology 145:203–215. doi: 10.1016/S0300-483X(99)00226-7 CrossRefPubMedGoogle Scholar
  8. Boxaspen K, Holm JC (2001) The development of pyrethrum-based treatments against the ectoparasitic salmon lice Lepeophtheirus salmonis in sea cage rearing of Atlantic salmon Salmo salar L. Aquac Res 32:701–707. doi: 10.1046/j.1365-2109.2001.00605.x CrossRefGoogle Scholar
  9. Bradbury SP, Coats JR (1989) Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environ Toxicol Chem 8:373–380. doi: 10.1002/etc.5620080503 CrossRefGoogle Scholar
  10. Caipang CM, Lazado CC, Brinchmann MF, Berg I, Kiron V (2009) In vivo modulation of immune response and antioxidant defense in Atlantic cod, Gadus morhua following oral administration of oxolinic acid and florfenicol. Comp Biochem Physiol C 150:459–464. doi: 10.1016/j.cbpc.2009.07.001 Google Scholar
  11. Campbell TW, Ellis CK (2007) Avian and exotic animal hematology and cytology, 3rd edn. Blackwell Publishing, IowaGoogle Scholar
  12. Davis AK, Cook KC, Altizier S (2004) Leukocyte profiles in wild house finches with and without mycoplasmal conjunctivitis, a recently emerged bacterial disease. EcoHealth 1:362–373. doi: 10.1007/s10393-004-0134-2 CrossRefGoogle Scholar
  13. Divyagnaneswari M, Dinakaran DR (2007) Enhancement of non-specific immunity and disease resistance in Oreochromis mossambicus by Solanum trilobatum leaf fractions. Fish Shellfish Immunol 23:249–259. doi: 10.1016/j.fsi.2006.09.015 CrossRefPubMedGoogle Scholar
  14. Dobsikova R, Velisek J, Wlasow T, Gomulka P, Svobodova Z, Novothny L (2006) Effects of cypermethrin on some haematological, biochemical and histopathological parameters of common carp (Cyprinus carpio L.) Environ Indust Toxicol 27:91–95Google Scholar
  15. El-Sayed YS, Saad TT, El-Bahr SM (2007) Acute intoxication of deltamethrin in monosex Nile tilapia, Oreochromis niloticus with special reference to the clinical, biochemical and haematological effects. Environ Toxicol Pharmacol 24:212–217. doi: 10.1016/j.etap.2007.05.006 CrossRefPubMedGoogle Scholar
  16. Eshleman AJ, Murray TF (1991) Pyrethroid insecticides indirectly inhibit GABA dependent Cl-influx in synaptoneurosomes from the trout brain. Neuro Pharmacol 30(12):1333–1341. doi: 10.1016/0028-3908(91)90031-6 Google Scholar
  17. Fatima M, Mandiki SN, Douxfils J, Silvestre F, Coppe P, Kestemont P (2007) Combined effects of herbicides on biomarkers reflecting immune-endocrine interactions in goldfish. Immune and antioxidant effects. Aquat Toxicol 81(2):59–67. doi: 10.1016/j.aquatox.2006.11.013 CrossRefGoogle Scholar
  18. Frederick LA, Van Veld PA, Rice CD (2007) Bioindicators of immune function in creosote-adapted estuarine killifish, Fundulus heteroclitus. J Toxic Environ Health A 70(17):1433–1442. doi: 10.1080/15287390701382910 CrossRefGoogle Scholar
  19. Gautam PP, Gupta AK (2008) Toxicity of cypermethrin to the juveniles of a freshwater fish, Poecilia reticulata (Peters) in relation to selected environmental variables. Nat Prod Rad 7:314–319Google Scholar
  20. Ghazaly KS (1992) Hematological and physiological responses to sub-lethal concentrations of cadmium in a freshwater teleost, Tilapia zillii. Water Air Soil Pollut 64:551–559. doi: 10.1007/BF00483365 CrossRefGoogle Scholar
  21. Girón-Pérez M, Santerre A, Gonzalez-Jaime F, Casas-Solis J, Hernández-Coronado M, Peregrina-Sandoval J, Takemura A, Zaitseva G (2007) Immunotoxicity and hepatic function evaluation in Nile tilapia (Oreochromis niloticus) exposed to diazinon. Fish Shellfish Immunol 23(4):760–769. doi: 10.1016/j.fsi.2007.02.004 CrossRefPubMedGoogle Scholar
  22. Girón-Pérez MI, Zaitseva G, Casas-Solis J, Santerre A (2008) Effects of diazinon and diazoxon on the lymphoproliferation rate of splenocytes from Nile tilapia (Oreochromis niloticus): the immunosuppresive effect could involve an increase in acetylcholine levels. Fish Shellfish Immunol 25(5):517–521. doi: 10.1016/j.fsi.2008.07.002 CrossRefPubMedGoogle Scholar
  23. Girón-Pérez MI, Velázquez-Fernández J, Díaz-Resendiz K, Díaz-Salas F, Canto-Montero C, Medina-Díaz I, Robledo-Marenco M, Rojas-García A, Zaitseva G (2009) Immunologic parameters evaluations in Nile tilapia (Oreochromis niloticus) exposed to sub-lethal concentrations of diazinon. Fish Shellfish Immunol 279(2):383–385. doi: 10.1016/j.fsi.2009.06.004 CrossRefGoogle Scholar
  24. Guardiola FA, Cerezuela R, Meseguer J, Esteban MA (2012) Modulation of the immune parameters and expression of genes of gilthead seabream (Sparus aurata L.) by dietary administration of oxytetracycline. Aquaculture 334-337:51–57. doi: 10.1016/j.aquaculture.2012.01.003 CrossRefGoogle Scholar
  25. Guardiola FA, Parraga PG, Meseguer J, Cuesta A, Esteban MA (2014a) Modulatory effects of deltamethrin-exposure on the immune status, metabolism and oxidative stress in gilthead seabream (Sparus aurata L.) Fish Shellfish Immunol 36:120–129. doi: 10.1016/j.fsi.2013.10.020 CrossRefPubMedGoogle Scholar
  26. Haarmann-Stemman T, Bothe H, Abel J (2009) Growth factors, cytokines and their receptors as downstream targets of aryl hydrocarbon receptor (AhR) signaling pathways. Biochem Pharmacol 77:508–520. doi: 10.1016/j.bcp.2008.09.013 CrossRefGoogle Scholar
  27. Hanilton MA, Russo RC, Thurston V (1977) Trimmed Spearman-Karber method for estimating medial lethal concentrations in toxicity bioassays. Environ Sci Technol 7:714–719. doi: 10.1021/es60130a004 CrossRefGoogle Scholar
  28. Huang F, Liu QY, Xie SJ, Xu J, Huang B, Wu YH et al (2016) Cypermethrin induces macrophages death through cell cycle arrest and oxidative stress-mediated JNK/ERK signaling regulated apoptosis. Int J Mol Sci 17(6):e885. doi: 10.3390/ijms17060885 CrossRefPubMedGoogle Scholar
  29. Iwanowicz LR, Blazer VS, McCormick SD, VanVeld PA, Ottinger CA (2009) Aroclor 1248 exposure leads to immunomodulation, decreased disease resistance and endocrine disruption in the brown bullhead, Ameiurus nebulosus. Aquat Toxicol 93:70–82. doi: 10.1016/j.aquatox.2009.03.008 CrossRefPubMedGoogle Scholar
  30. Jee LH, Masroor F, Kang JC (2005) Responses of cypermethrin-induced stress in haematological parameters of Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquac Res 36:898–905. doi: 10.1111/j.1365-2109.2005.01299.x CrossRefGoogle Scholar
  31. Jian J, Wu Z (2003) Effects of traditional Chinese medicine on non-specific immunity and disease resistance of large yellow croaker, Pseudosciaena crocea (Richardson). Aquaculture 218:1–9. doi: 10.1016/S0044-8486(02)00192-8 CrossRefGoogle Scholar
  32. Jin X, Chen R, Liu W, Fu Z (2010) Effect of endocrine disrupting chemicals on the transcription of genes related to the innate immune system in the early developmental stage of zebrafish (Danio rerio). Fish Shellfish Immunol 28:854–861. doi: 10.1016/j.fsi.2010.02.009 CrossRefPubMedGoogle Scholar
  33. Kan Y, Cengiz EI, Ugurlu P, Yanar M (2012) The protective role of vitamin E on gill and liver tissue histopathology and micronucleus frequencies in peripheral erythrocytes of Oreochromis niloticus exposed to deltamethrin. Environ Toxicol Pharmacol 34:170–179. doi: 10.1016/j.etap.2012.03.009 CrossRefPubMedGoogle Scholar
  34. Khangarot BS, Rathore RS, Tripathi DM (1999) Effects of chromium on humoral and cell-mediated immune responses and host resistance to disease in a freshwater catfish, Saccobranchus fossilis (Bloch). Ecotoxicol Environ Saf 43:11–20. doi: 10.1111/j.1574-695X.2002.tb00596.x CrossRefPubMedGoogle Scholar
  35. Khoshbavar-Rostami HA, Soltani M, Hassan HMD (2006) Immune response of great sturgeon (Huso huso) subjected to long-term exposure to sub-lethal concentration of the organophosphate diazinon. Aquaculture 256:88–94. doi: 10.1016/j.aquaculture.2006.02.041 CrossRefGoogle Scholar
  36. Kreutz LC, Barcellos LJ, Marteninghe A, Dos Santos ED, Zanatta R (2010) Exposure to sub-lethal concentration of glyphosate or atrazine-based herbicides alters the phagocytic function and increases the susceptibility of silver catfish fingerlings (Rhamdia quelen) to Aeromonas hydrophila challenge. Fish Shellfish Immunol 29(4):694–697. doi: 10.1016/j.fsi.2010.06.003 CrossRefPubMedGoogle Scholar
  37. Kwapinski JB (1965) Methods of serological research. Wiley, New York, pp 5–26Google Scholar
  38. Masud S, Singh I (2013) Temperature dependent toxicity and behavioural responses in the freshwater fish Cyprinus carpio exposed to pyrethroid pesticide, cypermethrin. J Environ Sci Water Resour 2(10):375–381Google Scholar
  39. Misra S, Sahu NP, Pal AK, Xavier B, Kumar S, Mukherjee SC (2006a) Pre and post-challenge immune-haematological changes in Labeo rohita juveniles fed gelatinized or non-gelatinised carbohydrate with n-3 PUFA. Fish Shellfish Immunol 21:346–356. doi: 10.1016/j.fsi.2005.12.010 CrossRefPubMedGoogle Scholar
  40. Misra CK, Das BK, Mukherjee SC, Pattnaik P (2006b) Effect of multiple injections of beta-glucan on non-specific immune response and disease resistance in Labeo rohita fingerlings. Fish Shellfish Immunol 20:305–331. doi: 10.1016/j.fsi.2005.05.007 CrossRefPubMedGoogle Scholar
  41. Mobasher M, Aramesh K, Aldavoud SJ, Ashrafganjooei N, Divsalar K, Philips CJC, Larigani B (2008) Proposing a national ethical framework for animal research in Iran. Iranian J Publ Health 37(1):39–46Google Scholar
  42. Mochida K, Lou YH, Hara A, Yamauchi K (1994) Physical biochemical properties of IgM from a teleost fish. Immunology 83:675–680PubMedPubMedCentralGoogle Scholar
  43. Moore A, Waring CP (2001) The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.) Aquat Toxicol 52:1–12. doi: 10.1016/S0166-445X(00)00133-8 CrossRefPubMedGoogle Scholar
  44. Nakayama K, Kitamura S, Murakami Y, Song JY, Jung SJ, Oh MJ, Iwata H, Tanabe S (2008) Toxicogenomic analysis of immune system-related genes in Japanese flounder (Paralichthys olivaceus) exposed to heavy oil. Mar Pollut Bull 57(96–120):445–452. doi: 10.1016/j.marpolbul.2008.02.021 CrossRefPubMedGoogle Scholar
  45. Nayak AK, Das BK, Kohli MP, Mukherjee SC (2004) The immunosuppressive effect of alpha-permethrin on Indian major carp, rohu (Labeo rohita Ham.) Fish Shellfish Immunol 16(1):41–50. doi: 10.1016/S1050-4648(03)00029-9 CrossRefPubMedGoogle Scholar
  46. Organization WH. Environmental Health Criteria 97. Deltamethrin. International Programme on Chemical Safety. Geneva: World Health Organization; 1990.p. 1–133Google Scholar
  47. Parvez S, Raisuddin S (2006) Copper modulates non-enzymatic antioxidants in the freshwater fish Channa punctata (Bloch) exposed to deltamethrin. Chemosphere 62:1324–1332. doi: 10.1016/j.chemosphere.2005.07.025 CrossRefPubMedGoogle Scholar
  48. Piska RS, Waghray S, Devi I (1992) The effect of sub-lethal concentration of synthetic pyrethroid, cypermethrin to the common carp, Cyprinus carpio communis (Linnaeus) fry. J Environ Biol 13(2):89–94Google Scholar
  49. Ramesh M, Srinivasan R, Saravanan M (2009) Effect of atrazine (herbicide) on blood parameters of common carp, Cyprinus carpio (Actinopterygii:Cypriniformes). Afr J Environ Sci Technol 3(12):453–458. doi: 10.5897/AJEST09.169 Google Scholar
  50. Rao YV, Das BK, Jyotyrmayee P, Chakrabarti R (2006) Effect of Achyranthes aspera on the immunity and survival of Labeo rohita infected with Aeromonas hydrophila. Fish Shellfish Immunol 20:263–273. doi: 10.1016/j.fsi.2005.04.006 CrossRefGoogle Scholar
  51. Reynaud S, Duchiron C, Deschaux P (2004) 3-methylcholanthrene induces lymphocytes and phagocyte apoptosis in common carp (Cyprinus carpio) in vitro. Aquat Toxicol 66:307–318. doi: 10.1016/j.aquatox.2003.10.003 CrossRefPubMedGoogle Scholar
  52. Saha S, Kaviraj A (2009) Effects of cypermethrin on some biochemical parameters and its amelioration through dietary supplementation of ascorbic acid in freshwater catfish Heteropneustes fossilis. Chemosphere 74:1254–1259. doi: 10.1016/j.chemosphere.2008.10.056 CrossRefPubMedGoogle Scholar
  53. Salas-Leiton E, Coste O, Asensio E, Infante C, Canavate JP, Manchado M (2012) Dexamethasone modulates expression of genes involved in the innate immune system, growth and stress and increases susceptibility to bacterial disease in Senegalese sole (Solea senegalensis Kaup, 1858). Fish Shellfish Immunol 32:769–778. doi: 10.1016/j.fsi.2012.01.030 CrossRefPubMedGoogle Scholar
  54. Schaperclaus W, Kulow H, Schreckenbach K (1991) Hematological and serological technique. In: Kothekar VS (ed) Fish disease. 2nd ed. vol. 1. N, 56 Connaught circus. Gulabprimlani, Oxonian press Pvt. Ltd, New Delhi, pp 71–108Google Scholar
  55. Segner H, Wenger M, Möller AM, Köllner B, Casanova-Nakayama A (2012) Immunotoxic effects of environmental toxicants in fish—how to assess them? Environ Sci Pollut Res 19:2465–2476. doi: 10.1007/s11356-012-0978-x CrossRefGoogle Scholar
  56. Shailesh Saurabh PK (2008) Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39:223–239. doi: 10.1111/j.1365-2109.2007.01883.x CrossRefGoogle Scholar
  57. Sharma M, Chadha P, Kumar Borah M (2015) Fish behaviour and immune response as a potential indicator of stress caused by 4-nonylphenol. Am J Bios 3(6):278–283. doi: 10.11648/j.ajbio.20150306.21 CrossRefGoogle Scholar
  58. Shelley LK (2012) Endocrine-immune interactions and the immunotoxicity of endocrine disrupting chemicals in rainbow trout (Oncorhynchus mykiss). University of British Columbia, CanadaGoogle Scholar
  59. Shelley LK, Balfry SK, Ross PS, Kennedy CJ (2009) Immunotoxicological effects of a sub-chronic exposure to selected current-use pesticides in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 92(2):95–103. doi: 10.1016/j.aquatox.2009.01.005 CrossRefPubMedGoogle Scholar
  60. Shelley LK, Ross PS, Miller KM, Kaukinen KH, Kennedy CJ (2012) Toxicity of atrazine and nonylphenol in juvenile rainbow trout (Oncorhynchus mykiss): effects on general health, disease susceptibility and gene expression. Aquat Toxicol 124-125:217–226. doi: 10.1016/j.aquatox.2012.08.007 CrossRefPubMedGoogle Scholar
  61. Siwicki AK, Terech-Majewska E, Grudniewska J, Malaczewska J, Kazun K, Lepa A (2010) Influence of deltamethrin on nonspecific cellular and humoral defense mechanisms in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 29:489–941. doi: 10.1002/etc.75 CrossRefPubMedGoogle Scholar
  62. Sopinska A, Guz L (1998) Influence of permethrin on phagocytic activity of carp. Med Weter 54(2):126–128Google Scholar
  63. Svoboda M, Luskova V, Drastihova J, Zlabek V (2001) The effect of diazinon on haematological indices of common carp (Cyprinus carpio). J Vet Med 70:457–465. doi: 10.2754/avb200 170040457 Google Scholar
  64. Svobodova Z, Machova J, Kolaova J, Vykusova B, Piaaka V (1996) The effect of selected negative factors on haematological parameters of common carp, Cyprinus carpio L. and tench, Tinca tinca L. Proc. Sci. Papers to the 75th Anniversary of Foundation of the RIFCH VodÀany, pp. 95–105Google Scholar
  65. Treasurer JW, Wadsworth SL (2004) Interspecific comparison of experimental and natural routes of Lepeophtheirus salmonis and Caligus elongatus challenge and consequences for distribution of chalimus on salmonids and therapeutant screening. Aquac Res 35(8):773–783. doi: 10.1111/j.1365-2109.2004.1100.x CrossRefGoogle Scholar
  66. Varshneya C, Singh T, Sharma LD, Bahga HS, Garg SK (1992) Immunotoxic responses of cypermethrin, a synthetic pyrethroid insecticide in rats. Indian J Physiol Pharmacol 36:123–126PubMedGoogle Scholar
  67. Velíšek J, Dobšíková R, Svobodová Z, Modrá H, Lusková V (2006a) Effect of deltamethrin on the biochemical profile of common carp (Cyprinus carpio L.) Bull Environ Contam Toxicol 76(6):992–998. doi: 10.1007/s00128-006-1016-9 CrossRefPubMedGoogle Scholar
  68. Velíšek J, Wlasow T, Gomulka P, Svobodová Z, Dobšíková R, Novotný L, Dudzik M (2006b) Effects of cypermethrin on rainbow trout (Oncorhynchus mykiss). Vet Med - Czech 51(10):469–476Google Scholar
  69. Velisek J, Svobodova Z, Machova J (2008) Effects of bifenthrin on some haematological, biochemical and histopathological parameters of common carp (Cyprinus carpio L.) Fish Physiol Biochem 35:583–590. doi: 10.1007/s10695-008-9258-6 CrossRefPubMedGoogle Scholar
  70. Whyte SK (2007) The innate immune response of finfish—a review of current knowledge. Fish Shellfish Immunol 23:1127–1151. doi: 10.1016/j.fsi.2007.06.005 CrossRefPubMedGoogle Scholar
  71. Yılmaz M, Gül A, Erbaşlı K (2004) Acute toxicity of alpha-cypermethrin to guppy (Poecilia reticulate Pallas, 1859). Chemosphere 56:381–385. doi: 10.1016/j.chemosphere.2004.02.034 CrossRefPubMedGoogle Scholar
  72. Zhou X, Niu C, Sun R, Li Q (2002) The effect of vitamin C on the non-specific immune response of the juvenile soft-shelled turtle, Trionyx sinensis. Comp Biochem Physiol 131A:917–922. doi: 10.1016/S1095-6433(02)00028-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Siyavash Soltanian
    • 1
  • Mohammad Saeed Fereidouni
    • 1
  1. 1.Aquatic Animal Health and Diseases Department, School of Veterinary MedicineShiraz UniversityShirazIran

Personalised recommendations