Advertisement

Fish Physiology and Biochemistry

, Volume 43, Issue 6, pp 1603–1612 | Cite as

Development of a method to assess the ichthyotoxicity of the harmful marine microalgae Karenia spp. using gill cell cultures from red sea bream (Pagrus major )

  • Nobuyuki Ohkubo
  • Yuji Tomaru
  • Haruo Yamaguchi
  • Saho Kitatsuji
  • Kazuhiko Mochida
Article
  • 205 Downloads

Abstract

The present study reports the development of a method to investigate ichthyotoxicity of harmful marine microalgae using cultured red sea bream (Pagrus major) gill cells. The cultured gill cells formed adherent 1–2 layers on the bottom of the culture plate and could tolerate seawater exposure for 4 h without significant alteration in cell survival. The microalgae Karenia mikimotoi, Karenia papilionacea, K. papilionacea phylotype-I, and Heterosigma akashiwo were cultured, then directly exposed to gill cells. After K. mikimotoi and K. papilionacea phylotype-I exposure, live cell coverage was significantly lower than in the cells exposed to a seawater-based medium (control cells; P < 0.05). Toxicity of K. mikimotoi cells was weakened when cells were ruptured, and was almost inexistent when the algal cells were removed from the culture by filtration. Significant cytotoxicity was detected in the concentrated ruptured cells, and in the concentrated of ruptured cells after freezing and thawing though cytotoxicity was weakened; whereas, cytotoxicity almost disappeared after heat treatment. In addition, examination of the distribution of toxic substances from the ruptured cells showed that cytotoxicity mainly occurred in the fraction with the resuspended pellet after centrifugation at 3000×g.

Keywords

Cytotoxicity Karenia mikimotoi Karenia papilionacea Marine fish gill cells 

Notes

Acknowledgements

We are grateful to Dr. Shigeru Itakura (Fisheries Agency of Japan), Dr. Osamu Kurata (Nippon Veterinary and Life Science University), and Ms. Chiaki Hiramoto (National Research Institute of Fisheries and Environment of Inland Sea). This study was supported in part by a grant-in-aid from the Fisheries Agency of Japan.

References

  1. Avella M, Ehrenfeld J (1997) Fish gill respiratory cells in culture: a new model for Cl-secreting epithelia. J Membr Biol 156:87–97CrossRefPubMedGoogle Scholar
  2. Bols N, Barlian A, Chirinotrejo M, Caldwell S, Goegan P, Lee L (1994) Development of a cell line from primary cultures of rainbow trout, Oncorhynchus mykiss (Walbaum), gills. J Fish Dis 17:601–611CrossRefGoogle Scholar
  3. Brand L, Campbell L, Bresnan E (2012) Karenia: The biology and ecology of a toxic genus. Harmful Algae 14:156–178CrossRefGoogle Scholar
  4. Bui P, Kelly SP (2015) Claudins in a primary cultured puffer fish (Tetraodon nigroviridis) gill epithelium model alter in response to acute seawater exposure. Comp Biochem Physiol A 189:91–101CrossRefGoogle Scholar
  5. Dorantes-Aranda J, Waite T, Godrant A, Rose A, Tovar C, Woods G, Hallegraeff G (2011) Novel application of a fish gill cell line assay to assess ichthyotoxicity of harmful marine microalgae. Harmful Algae 10:366–373CrossRefGoogle Scholar
  6. Dorantes-Aranda J, Seger A, Mardones J, Nichols P, Hallegraeff G (2015) Progress in understanding algal bloom-mediated fish kills: the role of superoxide radicals, phycotoxins and fatty acids. Plos one. doi: 10.1371/journal.pone.0133549
  7. Fisheries Agency (2013) Red Tides in the Seto Inland Sea. Fisheries Agency, Japan. http://www.jfa.maff.go.jp/setouti/akasio/gepou/pdf/24nenpou-1.pdf (in Japanese) Accessed 7 April 2017Google Scholar
  8. Fowler N, Tomas C, Baden D, Campbell L, Bourdelais A (2015) Chemical analysis of Karenia papilionacea. Toxicon 101:85–91CrossRefPubMedGoogle Scholar
  9. Hashimoto T, Suzuki Y, Sugimura M, Atoji Y (1987) Ultrastructure of gills and pseudobranches of red sea bream. Res Bull Fac Agr Gifu Univ 52:173–181 (in Japanese with English abstract)Google Scholar
  10. Herbst C (1904) Concerning the necessary inorganic substances for the development of sea urchin larvae, their role and their defensibleness. III. Part. The role of essential inorganic material. Arch Entwick Org 17:306–520CrossRefGoogle Scholar
  11. Hirano T, Johnson D, Bern H (1971) Control of water movement in flounder urinary bladder by prolactin. Nature 230:469–471CrossRefPubMedGoogle Scholar
  12. Imai I, Itakura S, Matsuyama Y, Yamaguchi M (1996) Selenium requirement for growth of a novel red tide flagellate Chattonella verruculosa (Raphidophyceae) in culture. Fish Sci 62:834–835CrossRefGoogle Scholar
  13. Imai I, Yamaguchi M, Hori Y (2006) Eutrophication and occurrences of harmful algal blooms in the Seto Inland Sea, Japan. Plankton Benthos Res 1:71–84CrossRefGoogle Scholar
  14. Ishimatsu A, Sameshima M, Tamura A, Oda T (1996) Histological analysis of the mechanisms of Chattonella-induced hypoxemia in yellowtail. Fish Sci 62:50–58CrossRefGoogle Scholar
  15. Katsuo D, Kima D, Yamaguchi K, Matsuyama Y, Oda T (2007) A new simple screening method for the detection of cytotoxic substances produced by harmful red tide phytoplankton. Harmful Algae 6:790–798CrossRefGoogle Scholar
  16. Leguen I, Cauty C, Odjo N, Corlu A, Pruneta P (2007) Trout gill cells in primary culture on solid and permeable supports. Comp Biochem Physiol A 148:903–921CrossRefGoogle Scholar
  17. Mitchell S, Rodger H (2007) Pathology of wild and cultured fish affected by a Karenia mikimotoi bloom in Ireland, 2005. Bull Eur Ass Fish Pathol 27:39–42Google Scholar
  18. Mooney B, de Salas M, Hallegraeff G, Place A (2009) Survey for karlotoxin production in 15 species of gymnodinioid dinoflagellates (Kareniaceae, Dinophyta). J Phycol 45:164–175CrossRefPubMedGoogle Scholar
  19. Mooney B, Hallegraeff G, Place A (2010) Ichthyotoxicity of four species of gymnodinioid dinoflagellates (Kareniaceae, Dinophyta) and purified karlotoxins to larval sheepshead minnow. Harmful Algae 9:557–562CrossRefGoogle Scholar
  20. Mooney B, Dorantes-Aranda J, Place A, Hallegraeff G (2011) Ichthyotoxicity of gymnodinioid dinoflagellates: PUFA and superoxide effects in sheepshead minnow larvae and rainbow trout gill cells. Mar Ecol Prog Ser 426:213–224CrossRefGoogle Scholar
  21. Pärt P, Norrgren L, Bergstrom E, Sjoberg P (1993) Primary cultures of epithelial cells from rainbow trout gills. J Exp Biol 175:219–232Google Scholar
  22. Satake M, Shoji M, Oshima Y, Naoki H, Fujita T, Yasumoto T (2002) Gymnocin-A, a cytotoxic polyether from the notorious red tide dinoflagellate, Gymnodinium mikimotoi. Tetrahedron Lett 43:5829–5832CrossRefGoogle Scholar
  23. Satake M, Tanaka Y, Ishikura Y, Oshima Y, Naoki H, Yasumoto T (2005) Gymnocin-B with the largest contiguous polyether rings from the red tide dinoflagellate, Karenia (formerly Gymnodinium) mikimotoi. Tetrahedron Lett 46:3537–3540CrossRefGoogle Scholar
  24. Skjelbred B, Horsberg TE, Tollefsen KE, Andersen T, Edvardsen B (2011) Toxicity of the ichthyotoxic marine flagellate Pseudochattonella (Dictyochophyceae, Heterokonta) assessed by six bioassays. Harmful Algae 10:144–154CrossRefGoogle Scholar
  25. Tanneberger K, Knobel M, Busser F, Sinnige T, Hermens J, Schirmer K (2013) Predicting fish acute toxicity using a fish gill cell line-based toxicity assay. Environ Sci Technol 47:1110–1119CrossRefPubMedGoogle Scholar
  26. Yamaguchi H, Hirano T, Yoshimatsu T, Tanimoto Y, Matsumoto T, Suzuki S, Hayashi Y, Urabe A, Miyamura K, Sakamoto S, Yamaguchi M, Tomaru Y (2016) Occurrence of Karenia papilionacea (Dinophyceae) and its novel sister phylotype in Japanese coastal waters. Harmful Algae 57:59–68CrossRefGoogle Scholar
  27. Yamasaki Y, Kim D, Matsuyama Y, Oda T, Honjo T (2004) Production of superoxide anion and hydrogen peroxide by the red tide dinoflagellate Karenia mikimotoi. J Biosci Bioeng 97:212–215CrossRefPubMedGoogle Scholar
  28. Zhou B, Liu W, Wu R, Lam P (2005) Cultured gill epithelial cells from tilapia (Oreochromis niloticus): a new in vitro assay for toxicants. Aquat Toxicol 71:61–72CrossRefPubMedGoogle Scholar
  29. Zou Y, Yamasaki Y, Matsuyama Y, Yamaguchi K, Honjo T, Oda T (2010) Possible involvement of hemolytic activity in the contact-dependent lethal effects of the dinoflagellate Karenia mikimotoi on the rotifer Brachionus plicatilis. Harmful Algae 9:367–373CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Nobuyuki Ohkubo
    • 1
  • Yuji Tomaru
    • 1
  • Haruo Yamaguchi
    • 2
  • Saho Kitatsuji
    • 1
  • Kazuhiko Mochida
    • 1
  1. 1.National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education AgencyHatsukaichiJapan
  2. 2.Faculty of AgricultureKochi UniversityNankokuJapan

Personalised recommendations