Fish Physiology and Biochemistry

, Volume 43, Issue 6, pp 1463–1476 | Cite as

Sequence and functional analysis of intestinal alkaline phosphatase from Lateolabrax maculatus

  • Minglin Wu
  • Jiaqi Wang
  • Zhipeng Wang
  • Jinliang Zhao
  • Yuting Hu
  • Xiaowu ChenEmail author


Alkaline phosphatases (Alps) belong to a class of phosphate transferases that dephosphorylate lipopolysaccharide (LPS), adenosine triphosphate, and nucleotides. In this study, a 1874-base pair (bp) intestinal alp cDNA sequence was cloned from Lateolabrax maculatus and designated as Lm-alpi. It contained a 1611 bp open reading frame which encoded a protein with 537 amino acids. Protein sequence alignment showed that Lm-AlpI shared 29.8–79.8% identity with its homologs. Lm-AlpI catalytic sites contained three metal ion sites (two Zn2+ and one Mg2+), referring to D73, H184, D348, H349, H352, H464, D389, and H390 residues, which are essential for enzymatic activity and conservation in different organisms. Two predicted disulfide bonds in Lm-AlpI were composed of four cysteines (C152–C214 and C499–C506), which were homologous to those of mammals. Immunohistochemical staining revealed that Lm-AlpI was mainly expressed on the mucosal surface of the gastrointestinal tract, including stomach, intestine, and gastric cecum. Lm-AlpI was mainly located on the plasma membrane of transiently transfected HeLa cells. The mRNA of Lm-alpi was mainly expressed in the intestine, and its expression levels gradually increased after LPS treatment and further increased by 1.81-fold after 48 h. After desalting culture, the relative mRNA expression level of Lm-alpi decreased at 30 and 50 days after hatching (DAH) and then returned to normal levels at 70 DAH. Further experiments demonstrated that the enzyme activity of Lm-AlpI exhibited an expression pattern similar to that of the mRNA expression of Lm-alpi after LPS treatment and desalting culture. This study provided valuable information on the Lm-AlpI functions associated with the mucosal immunity and salinity adaptation of L. maculatus.


Alkaline phosphatase Lateolabrax maculatus Mucosal immunity Lipopolysaccharide Salinity 



This work was financially supported by the China Agriculture Research System (CARS-49), the Shanghai Collaborate Innovation Center for Aquatic Animal Genetics and Breeding (ZF1206), the Talent Development Special Fund of Anhui Academy of Agricultural Sciences (16F0505), and the Subjects Construction Fund of Anhui Academy of Agricultural Sciences (17A0515).


  1. Aruna A, Nagarajan G, Chang C (2015) The acute salinity changes activate the dual pathways of endocrine responses in the brain and pituitary of tilapia. Gen Comp Endocr 211:154–164CrossRefPubMedGoogle Scholar
  2. Ásgeirsson B, Hartemink R, Chlebowski JF (1995) Alkaline phosphatase from Atlantic cod (Gadus morhua). Kinetic and structural properties which indicate adaptation to low temperatures. Comp Biochem Phys B 110(2):315–329CrossRefGoogle Scholar
  3. Bates J, Mittge E, Baden K, Cheesman SE, Guillemin K (2006) Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev Biol 297(2):374–386CrossRefPubMedGoogle Scholar
  4. Bates J, Akerlund J, Mittge E, Guillemin K (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2(6):371–382CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bendtsen JD, Nielsen HB, Von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340(4):783–795CrossRefPubMedGoogle Scholar
  6. Beumer C, Wulferink M, Raaben W, Fiechter D, Brands R, Seinen W (2003) Calf intestinal alkaline phosphatase, a novel therapeutic drug for lipopolysaccharide (LPS)-mediated diseases, attenuates LPS toxicity in mice and piglets. J Pharmacol Exp Ther 307(2):737–744CrossRefPubMedGoogle Scholar
  7. Boeuf G, Payan P (2001) How should salinity influence fish growth. Comp Biochem Phys C 130(4):411–423Google Scholar
  8. Bortolato M, Besson F, Roux B (2002) An infrared study of the thermal and pH stabilities of the GPI-alkaline phosphatase from bovine intestine. Biochem Bioph Res Co 292(4):874–879CrossRefGoogle Scholar
  9. Cahu CL (2001) Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Phys C 130(4):477–487Google Scholar
  10. Cario E, Podolsky DK (2005) Intestinal epithelial Tollerance versus in Tollerance of commensals. Mol Immunol 42(8):887CrossRefPubMedGoogle Scholar
  11. Chen KT, Malo MS, Beasley-Topliffe L, Poelstra K, Millan JL, Mostafa G, Alam SN, Ramasamy S, Warren HS, Hohmann EL, Hodin RA (2011) A role for intestinal alkaline phosphatase in the maintenance of local gut immunity. Dig Dis Sci 56(4):1020–1027CrossRefPubMedGoogle Scholar
  12. Chen XW, Wei Q, Wang ZP, Wang CL, Bi YH, Gu YF (2016) Identification and functional analysis of interferon regulatory factor 3 in Lateolabrax maculatus. Dev Comp Immunol 63:1–9CrossRefPubMedGoogle Scholar
  13. Faccioli CK, Chedid RA, Mori RH, Amaral AC, Franceschini-Vicentini IB, Vicentini CA (2016) Acid and alkaline phosphatase localization in the digestive tract mucosa of the Hemisorubim platyrhynchos. Acta Histochem 118(7):722–728CrossRefPubMedGoogle Scholar
  14. Foit L, Thaxton CS (2016) Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4. Biomaterials 100:67–75CrossRefPubMedGoogle Scholar
  15. Funk CJ (2001) Alkaline phosphatase activity in whitefly salivary glands and saliva. Arch Insect Biochem 46(4):165–174CrossRefGoogle Scholar
  16. Goldberg RF, Austen WG, Zhang XB, Munene G, Mostafa G, Biswas S, McCormack M, Eberlin KR, Nguyen JT, Tatlidede HS, Warren HS, Narisawa S, Millán JL, Hodin RA (2008) Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. P Natl Acad Sci USA 105(9):3551–3556CrossRefGoogle Scholar
  17. Guo S, Alsadi R, Said HM, Ma TY (2013) Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol 182(2):375–387CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 7(3):310–322Google Scholar
  19. Haddy JA, Pankhurst NW (2000) The effects of salinity on reproductive development, plasma steroid levels, fertilisation and egg survival in black bream Acanthopagrus butcheri. Aquaculture 188(1):115–131CrossRefGoogle Scholar
  20. Harris H (1990) The human alkaline phosphatases: what we know and what we don’t know. Clin Chim Acta 186:133–150CrossRefPubMedGoogle Scholar
  21. Heemskerk S, Masereeuw R, Moesker O, Bouw MPWJM, van der Hoeven JG, Peters WHM, Russel FGM, Pickkers P (2009) Alkaline phosphatase treatment improves renal function in patients with severe sepsis or septic shock patients. Crit Care 37(2):417–423CrossRefGoogle Scholar
  22. Heinzerling NP, Liedel JL, Welak SR, Fredrich K, Biesterveld BE, Pritchard KA, Gourlay DM (2014) Intestinal alkaline phosphatase is protective to the preterm rat pup intestine. J Pediatr Surg 49(6):954–960CrossRefPubMedPubMedCentralGoogle Scholar
  23. Henning SJ (1985) Ontogeny of enzymes in the small intesine. Annu Rev Physiol 47(1):231–245CrossRefPubMedGoogle Scholar
  24. Hernández-Mosqueira C, Velez-delvalle C, Kuri-Harcuch W (2015) Tissue alkaline phosphatase is involved in lipid metabolism and gene expression and secretion of adipokines in adipocytes. Biochim Biophys Acta 1850(12):2485CrossRefPubMedGoogle Scholar
  25. Kim WS, Kim JM, Kim MS, Park CW, Huh H (1998) Effects of sudden changes in salinity on endogenous rhythm of the spotted sea bass Lateolabrax sp. Mar Biol 131(2):219–225CrossRefGoogle Scholar
  26. Kirschner LB (1991) Water and ions. In: Prosser CL (ed) Environmental and metabolic animal physiology. Wiley, USA, pp 13–107Google Scholar
  27. Kozak M (1980) Evaluation of the “scanning model” for initiation of protein synthesis in eucaryotes. Cell 22(1):7–8CrossRefPubMedGoogle Scholar
  28. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44(2):283–292CrossRefPubMedGoogle Scholar
  29. Kozlenkov A, Manes T, Hoylaerts MF, Millan JL (2002) Function assignment to conserved residues in mammalian alkaline phosphatases. J Biol Chem 277(25):22992CrossRefPubMedGoogle Scholar
  30. Lalles JP (2010) Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutr Rev 68(6):323–332CrossRefPubMedGoogle Scholar
  31. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291CrossRefGoogle Scholar
  32. Le Du M, Millán JL (2002) Structural evidence of functional divergence in human alkaline phosphatases. J Biol Chem 277(51):49808–49814CrossRefPubMedGoogle Scholar
  33. Li HN, Zhao Y, Li W, Yang J, Wu HY (2016) Critical role of neutrophil alkaline phosphatase in the antimicrobial function of neutrophils. Life Sci 157:152–157CrossRefPubMedGoogle Scholar
  34. Liu W, Hu D, Huo HZ, Zhang WF, Adiliaghdam F, Morrison S, Ramirez J, Gul SS, Hamarneh SR, Hodin RA (2016) Intestinal alkaline phosphatase regulates tight junction protein levels. J Am Coll Surgeons 222(6):1009–1017CrossRefGoogle Scholar
  35. Llinas P, Stura EA, Menez A, Kiss Z, Stigbrand T, Millan JL, Du MHL (2005) Structural studies of human placental alkaline phosphatase in complex with functional ligands. J Mol Biol 350(3):441–451CrossRefPubMedGoogle Scholar
  36. Lovett DL, Towle DW, Faris JE (1994) Salinity-sensitive alkaline phosphatase activity in gills of the blue crab, Callinectes sapidus Rathbun. Comp Biochem Phys B 109(1):163–173CrossRefGoogle Scholar
  37. Lucu C, Towle DW (2003) Na++K+-ATPase in gills of aquatic crustacea. Comp Biochem Phys A 135(2):195–214CrossRefGoogle Scholar
  38. Lukas M, Drastich P, Konecný M, Gionchetti P, Urban O, Cantoni F, Bortlik M, Duricova D, Bulitta M (2010) Exogenous alkaline phosphatase for the treatment of patients with moderate to severe ulcerative colitis. Inflamm Bowel Dis 16(7):1180–1186CrossRefPubMedGoogle Scholar
  39. Lynes MD, Narisawa S, Millan JL, Widmaier EP (2011) Interactions between CD36 and global intestinal alkaline phosphatase in mouse small intestine and effects of high-fat diet. Am J Physiol Regul Integr Comp Physiol 301(6):1738–1747CrossRefGoogle Scholar
  40. Malo MS (2015) A high level of intestinal alkaline phosphatase is protective against type 2 diabetes mellitus irrespective of obesity. Ebiomedicine 2(12):2016–2023CrossRefPubMedPubMedCentralGoogle Scholar
  41. Martínez-Moya P, Ortega-González M, González R, Anzola A, Ocón-Moreno B, Hernandez-Chirlaque C, Posadas RL, Suárez MD, Zarzuelo A, Martinez O, de Medina FS (2012) Exogenous alkaline phosphatase treatment complements endogenous enzyme protection in colonic inflammation and reduces bacterial translocation in rats. Pharmacol Res 66(2):144–153CrossRefPubMedGoogle Scholar
  42. Millán JL (2006) Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. Wiley-VCH, New YorkCrossRefGoogle Scholar
  43. O’Brienn PJ, Lassila JK, Fenn TD, Zalatan JG, Herschlag D (2008) Arginine coordination in enzymatic phosphoryl transfer: evaluation of the effect of Arg166 mutations in Escherichia coli alkaline phosphatase. Biochemistry 47(29):7663–7672CrossRefGoogle Scholar
  44. Olsen RL, Overbo K, Myrnes B (1991) Alkaline phophatase from the hepatopancreas of shrimp (Pandalus borealis): a dimeric enzyme with catalytically active subunits. Comp Biochem Phys B 99(4):755–761CrossRefGoogle Scholar
  45. Orimo H (2010) The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nip Med Sch 77(1):4–12CrossRefGoogle Scholar
  46. Pickkers P, Heemskerk S, Schouten J, Laterre PF, Vincent JL, Beishuizen A, Jorens P, Spapen H, Bulitta M, Peters WHM, van der Hoeven JG (2012) Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: a prospective randomized double-blind placebo-controlled trial. Crit Care 16(1):1–12CrossRefGoogle Scholar
  47. Pinoni SA, López Mañanes AA (2004) Alkaline phosphatase activity sensitive to environmental salinity and dopamine in muscle of the euryhaline crab Cyrtograpsus angulatus. J Exp Mar Bio Ecol 307(1):35–46CrossRefGoogle Scholar
  48. Pinoni SA, Goldemberg AL, Mañanes AAL (2005) Alkaline phosphatase activities in muscle of the euryhaline crab Chasmagnathus granulatus: response to environmental salinity. J Exp Mar Bio Ecol 2(326):217–226CrossRefGoogle Scholar
  49. Rawls JF, Mahowald MA, Ley RE, Gordon JI (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127:423CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schwartz JH, Lipmann F (1961) Phosphate incorporation into alkaline phosphatase of E. coli. Proc Natl Acad Sci U S A 47:1996CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385CrossRefPubMedPubMedCentralGoogle Scholar
  52. Shi ZY, Chen XW, Gu YF (2011) Cloning and expression pattern of alkaline phosphatase during the development of Paralichthys olivaceus. Fish Physiol Biochem 37(3):411–424CrossRefPubMedGoogle Scholar
  53. Stec B, Holtz KM, Kantrowitz ER (2000) A revised mechanism for the alkaline phosphatase reaction involving three metal ions. J Mol Biol 299(5):1303–1311CrossRefPubMedGoogle Scholar
  54. Subramaniam K, Shariff M, Omar AR, Hair-Bejo M (2012) Megalocytivirus infection in fish. Rev Aquac 4(4):221–233CrossRefGoogle Scholar
  55. Tran-Ngoc KT, Schrama JW, Le MTT, Nguyen TH, Roem AJ, Verretha JAJ (2016) Salinity and diet composition affect digestibility and intestinal morphology in Nile tilapia (Oreochromis niloticus). Aquaculture 469:36–43CrossRefGoogle Scholar
  56. Tuin A, Huizinga-van der Vlag A, Van Loenen-Weemaes AMA, Meijer DKF, Poelstra K (2006) On the role and fate of LPS-dephosphorylating activity in the rat liver. Am J of Physiol-gastr L 290(2):377–385Google Scholar
  57. Vaishnava S, Hooper LV (2007) Alkaline phosphatase: keeping the peace at the gut epithelial surface. Cell Host Microbe 2(6):365–367CrossRefPubMedGoogle Scholar
  58. Van Veen SQ, Van Vliet AK, Wulferink M, Boermeester MA, Van Gulik TM (2005) Bovine intestinal alkaline phosphatase attenuates the inflammatory response in secondary peritonitis in mice. Infect Immun 73(7):4309–4314CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wang J, Stieglitz AK, Kantrowitz ER (2005) Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Biochemistry 44(23):8378CrossRefPubMedGoogle Scholar
  60. Whyte MP (2010) Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann N Y Acad Sci 1192:190CrossRefPubMedGoogle Scholar
  61. Wu DC, Teng D, Xi D, Wang XM, Wang XJ, Mao RY, Zhang Y, Dai H, Wang JH (2014) Rapid cloning, expression and purification of a novel high-activity alkaline phosphatase with detoxification of lipopolysaccharide. Process Biochem 49(3):402–408CrossRefGoogle Scholar
  62. Yang Y, Wandler AM, Postlethwait JH, Guillemin K (2012) Dynamic evolution of the LPS-detoxifying enzyme intestinal alkaline phosphatase in zebrafish and other vertebrates. Front Immunol 3:314CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Minglin Wu
    • 1
    • 2
  • Jiaqi Wang
    • 1
  • Zhipeng Wang
    • 1
  • Jinliang Zhao
    • 1
  • Yuting Hu
    • 2
  • Xiaowu Chen
    • 1
    Email author
  1. 1.Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of EducationShanghai Ocean UniversityShanghaiChina
  2. 2.Fisheries Research Institute, Anhui Academy of Agricultural SciencesHefeiChina

Personalised recommendations