Advertisement

Fish Physiology and Biochemistry

, Volume 43, Issue 3, pp 833–848 | Cite as

Development of short-snouted seahorse (Hippocampus hippocampus, L. 1758): osteological and morphological aspects

  • B. NovelliEmail author
  • F. Otero-Ferrer
  • J. A. Socorro
  • M. J. Caballero
  • A. Segade-Botella
  • L. Molina Domínguez
Article

Abstract

Information about early development after male release lags behind studies of juveniles and adult seahorses, and newborn seahorses, similar in shape to adults, are considered juveniles or fry. During early life, Hippocampus hippocampus present behavioural (shift in habitat, from planktonic to benthic) and morphological changes; for this reasons, the aims of this study are to define the stage of development of H. hippocampus after they are expelled from the male brood pouch and to establish direct or indirect development through an osteological analysis. The ossification process was studied in 120 individuals, from their release to 30 days after birth. To analyse the osteological development, Alcian Blue-Alizarin Red double staining technique for bone and cartilage was adapted to this species. At birth, H. hippocampus presents a mainly cartilaginous structure that ossifies in approximately 1 month. The bony armour composed of bony rings and plates develops in 10 days. The caudal fin, a structure absent in juveniles and adult seahorses, is present at birth and progressively disappears with age. The absence of adult osteological structure in newborns, like coronet, bony rings and plates, head spines and components allowing tail prehensile abilities, suggests a metamorphosis before the juvenile stage. During the indirect development, the metamorphic stage started inside brood pouch and followed outside and leads up to reconsider the status of H. hippocampus newborns.

Keywords

Seahorse larvae Osteological development Newborn seahorse Indirect development Metamorphosis Coronet 

Notes

Acknowledgments

In memoriam of Professor Massimo Trentini. The authors would like to express their gratitude to Dr. Theodore Packard for his language revision of the manuscript. The authors thank the IU-Ecoaqua for the technical support and BIOMBA project (CTM2012/32729) for partially funding this work.

References

  1. Arratia G, Schultze HP, Casciotta J (2001) Vertebral column and associated elements in dipnoans and comparison with other fishes: development and homology. J Morphol 250:101–172CrossRefPubMedGoogle Scholar
  2. Azzarello MY (1989) The pterygoid series in Hippocampus zosterae and Sygnathus scovelli (Pisces: Syngnathidae). Copeia 1989:621–628CrossRefGoogle Scholar
  3. Azzarello MY (1990) A comparative study of the developmental osteology of Syngnathus scovelli and Hippocampus zosterae (Pisces, Syngnathidae) and its phylogenetic implications. South Florida: Evol Monogr 12:1–90Google Scholar
  4. Balon EK (1999) Alternative ways to become a juvenile or a definitive phenotype (and on some persisting linguistic offenses). Environ Biol Fish 56:17–38CrossRefGoogle Scholar
  5. Bergert BA, Wainwright PC (1997) Morphology and kinematics of prey capture in the syngnathid fishes Hippocampus erectus and Syngnathus floridae. Mar Biol 127:563–570CrossRefGoogle Scholar
  6. Bishop CD, Erezyilmaz DF, Flatt T, Georgiou CD, Hadfield MG, Heyland A, Hodin J, Jacobs MW, Maslakova SA, Pires A, Reitzel AM, Santagata S, Tanaka K, Youson JH (2006) What is metamorphosis? Integr Comp Biol 46:655–661CrossRefPubMedGoogle Scholar
  7. Brunelli G (1922) Sullo sviluppo del cavalluccio marino (Hippocampus guttulatus Cuv.). In: Ferrari (ed). Regio Comitato Talassografico Italiano, Memoria XCI. Venezia, pp 1–15Google Scholar
  8. Bruner E, Bartolino V (2008) Morphological variation in the seahorse vertebral system. Int J Morphol 26:247–262CrossRefGoogle Scholar
  9. Chang M, Southgate PC (2001) Effects of varying dietary fatty acid composition on growth and survival of seahorse, Hippocampus sp. juveniles. Aquar Sci Conserv 3:205–214Google Scholar
  10. Choo CK, Liew HC (2006) Morphological development and allometric growth patterns in the juvenile seahorse Hippocampus kuda Bleeker. J Fish Biol 69:426–445CrossRefGoogle Scholar
  11. Colson DJ, Patek SN, Brainerd EL, Lewis SM (1998) Sound production during feeding in Hippocampus seahorses (Syngnathidae). Environ Biol Fish 51:221–229CrossRefGoogle Scholar
  12. De Beer GR (1937) The development of the vertebrate skull. Clarendon Press, OxfordGoogle Scholar
  13. Dingerkus G, Uhler LD (1977) Enzyme clearing of alcian blue stained whole vertebrates for determination of cartilage. Biotech Histochem 52:229–232Google Scholar
  14. Falerio F, Narciso L (2011) Prey-predator dynamics in seahorses (Hippocampus guttulatus): deciphering fatty acid clues. Aquac Res 44:618–633CrossRefGoogle Scholar
  15. Foster S, Vincent A (2004) Life history and ecology of seahorses: implications for conservation and management. J Fish Biol 65:1–61CrossRefGoogle Scholar
  16. Franz-Odendaal TA, Adriaens D (2014) Comparative developmental osteology of the seahorse skeleton reveals heterochrony amongst Hippocampus sp. and progressive caudal fin loss. EvoDevo 5:1–12CrossRefGoogle Scholar
  17. Geffen AJ, van der Veer HW, Nash RDM (2007) The cost of metamorphosis in flatfishes. J Sea Res 58:35–45CrossRefGoogle Scholar
  18. Gluckman I, Huriaux F, Focant B, Vandewalle P (1999) Postembryonic development of the cephalic skeleton in Dicentrarchus labrax (Pisces, Perciformes, Serranidae). Bull Mar Sci 65:11–36Google Scholar
  19. Gosline WA (1965) Teleostean phylogeny. Copeia 2:186–194CrossRefGoogle Scholar
  20. Gregory WK (1959) Fish skulls a study of the evolution of natural mechanism. Florida: Eric Lundberg LaurelGoogle Scholar
  21. Kadam KM (1958) The development of the chondrocranium in the sea-horse Hippocampus (Lophobranchii). J Linn Soc Lond Zool 43:557–573CrossRefGoogle Scholar
  22. Kanou K, Kohno H (2001) Early life history of a seahorse, Hippocampus mohnikei, in Tokio Bay. Japan Ichthyol Res 48:361–368CrossRefGoogle Scholar
  23. Koldewey HJ, Martin-Smith KM (2010) A global review of seahorse aquaculture. Aquaculture 302:131–152CrossRefGoogle Scholar
  24. Koumoundouros G, Sfakianakis DG, Maingot E, Divanach P, Kentouri M (2001) Osteological development of the vertebral column and of the fins in Diplodus sargus (Teleostei: Perciformes: Sparidae). Mar Biol 139:853–862CrossRefGoogle Scholar
  25. Leysen H, Christiaens J, De Kegel B, Boone MN, Van Hoorebeke L, Adriaens D (2011) Musculoskeletal structure of the feeding system and implications of snout elongation in Hippocampus reidi and Dunckerocampus dactyliophorus. J Fish Biol 78:1799–1823CrossRefPubMedGoogle Scholar
  26. Leysen H, Jouk P, Brunain M, Christiaens J, Adriaens D (2010) Cranial architecture of tube-snouted Gasterosteiformes (Syngnathus rostellatus and Hippocampus capensis). J Morphol 271:255–270CrossRefPubMedGoogle Scholar
  27. Lin Q, Li G, Qin G, Lin J, Huang L, Sun H, Feng P (2012) The dynamics of reproductive rate, offspring survivorship and growth in the lined seahorse, Hippocampus erectus Perry, 1810. Biol Open 1:391–396CrossRefPubMedPubMedCentralGoogle Scholar
  28. Liu CH (2001) Early osteological development of the yellow tail Seriola dumerili (Pisces: Carangidae). Zool Stud 40:289–298Google Scholar
  29. Lockyear J, Kaiser H, Hecht T (1997) Studies on the captive breeding of the Knysna seahorse, Hippocampus capensis. Aquar Sci Conserv 1:129–136CrossRefGoogle Scholar
  30. Lourie SA (2003) Measuring seahorses. In: Martin-Smith K (ed) Project seahorse: technical report 4. University of British Columbia, Vancouver, pp 1–15Google Scholar
  31. Lourie SA, Pritchard JC, Casey SP, Truong SK, Hall HJ, Vincent AC (1999) The taxonomy of Vietnam’s exploited seahorses (family Syngnathidae). Biol J Linnean Soc 66:231–256CrossRefGoogle Scholar
  32. Lourie SA, Vincent ACJ, Hall HJ (2004) Seahorses: an identification guide to the world’s species and their conservation. Project Seahorse, LondonGoogle Scholar
  33. Martinez-Cardenas L, Purser JG (2012) Substrate-attachment preferences of cultured newborn pot-bellied seahorses, Hippocampus abdominalis (lesson, 1827). J World Aquacult Soc 43:286–290CrossRefGoogle Scholar
  34. Murugan A, Dhanya S, Sreepada RA, Rajagopal S, Balasubramanian T (2009) Breeding and mass-scale rearing of three spotted seahorse, Hippocampus trimaculatus leach under captive conditions. Aquaculture 290:87–96CrossRefGoogle Scholar
  35. Novelli B, Socorro JA, Caballero MJ, Otero-Ferrer F, Segade-Botella A, Molina L (2015) Development of seahorse (Hippocampus reidi, Ginsburg 1933): histological and histochemical study. Fish Physiol Biochem 41:1233–1251CrossRefPubMedGoogle Scholar
  36. Novelli B, Otero-Ferrer F, Diaz M, Socorro JA, Caballero MJ, Domínguez LM, Moyano FJ (2016) Digestive biochemistry as indicator of the nutritional status during early development of the long snouted seahorse (Hippocampus reidi). Aquaculture. doi: 10.1016/j.aquaculture.2016.06.037 Google Scholar
  37. Otero-Ferrer F, Molina L, Socorro J, Herrera R, Fernández-Palacios H, Izquierdo MS (2010) Live prey first feeding regimes for short-snouted seahorse Hippocampus hippocampus (Linnaeus, 1758) juveniles. Aquac Res 41:8–19CrossRefGoogle Scholar
  38. Otero-Ferrer F, Izquierdo M, Fazeli A, Holt W (2014) Embryonic developmental plasticity in the long-snouted seahorse (Hippocampus reidi, Ginsburg 1933) in relation to parental preconception diet. Reprod Fertil Dev. doi: 10.1071/RD14169 PubMedGoogle Scholar
  39. Payne MF, Rippingale RJ (2000) Rearing west Australian seahorse, Hippocampus subelongatus, juveniles on copepod nauplii and enriched Artemia. Aquaculture 188:353–361CrossRefGoogle Scholar
  40. Porter MM, Novitskaya E, Castro-Ceseña AB, Meyers MA, McKittrick J (2013) Highly deformable bones: unusual deformation mechanism of seahorse armor. Act Bio 6:6763–6770CrossRefGoogle Scholar
  41. Potthoff T, Kelley S, Javech JC (1986) Cartilage and bone development in sgombroid fishes. Fish Bull 84:647–678Google Scholar
  42. Sfakianakis DG, Koumoundouros G, Divanach P, Kentouri M (2004) Osteological development of the vertebral column and of the fins in Pagellus erythrinus (L. 1758). Temperature effect on the developmental plasticity and morpho-anatomical abnormalities. Aquaculture 232:407–424CrossRefGoogle Scholar
  43. Silveira RB (2000) Desenvolvimento osteólogico de Hippocampus reidi Ginsburg (Pisces, Syngnathiformes, Syngnathidae) em laboratorio. II. Periódo juveníl. Rev Bras Zool 17:515–531CrossRefGoogle Scholar
  44. Socorro JA (2006) Estudio comparado del desarrollo embrionario y larvario del bocinegro (Pagrus pagrus) y de la sama de pluma (Dentex gibbosus). PhD thesis, University of Las Palmas de Gran CanariaGoogle Scholar
  45. Sommer S, Whittington CM, Wilson AB (2012) Standardised classification of pre- release development in male-brooding pipefish, seahorses, and seadragons (family Syngnathidae). Develop Biol 12:39Google Scholar
  46. Stölting KN, Wilson AB (2007) Male pregnancy in seahorses and pipefish: beyond the mammalian model. BioEssays 29:884–896CrossRefPubMedGoogle Scholar
  47. Taylor WR, Van Dyke GC (1985) Revised procedures for staining and clearing fishes and other vertebrates for bone and cartilage studies. Cybium 9:107–119Google Scholar
  48. Van Wassenbergh S, Roos G, Genbrugge A, Leysen H, Aerts P, Adriaens D, Herrel A (2009) Suction is kid’s play: extremely fast suction in newborn seahorses. Biol Lett 5:200–203CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wittenrich ML, Rhody NR, Turingan RG, Main KL (2009) Coupling osteological development of the feeding apparatus with feeding performance in common Snook, Centropomus undecimalis, larvae: identifying morphological constraints to feeding. Aquaculture 294:221–227CrossRefGoogle Scholar
  50. Woods CMC (2003) Growth and survival of juvenile seahorse Hippocampus abdominalis reared on live, frozen and artificial foods. Aquaculture 220:287–298CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • B. Novelli
    • 1
    Email author
  • F. Otero-Ferrer
    • 1
    • 2
  • J. A. Socorro
    • 1
  • M. J. Caballero
    • 1
  • A. Segade-Botella
    • 1
  • L. Molina Domínguez
    • 1
  1. 1.Grupo de Investigación en Acuicultura (GIA), IU-EcoaquaUniversidad de las Palmas de Gran Canaria (ULPGC)Las PalmasSpain
  2. 2.Grupo en Biodiversidad y Conservación (BIOCON)Universidad de las Palmas de Gran Canaria (ULPGC)Las PalmasSpain

Personalised recommendations