Skip to main content
Log in

Molecular characterization and expression of Na+/K+-ATPase α1 isoforms in the European sea bass Dicentrarchus labrax osmoregulatory tissues following salinity transfer

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The Na+/K+-ATPase (NKA) is considered as the main pump involved in active ion transport. In the European sea bass, Dicentrarchus labrax, we found two genes encoding for the alpha 1 subunit isoforms (NKA α1a and NKA α1b). NKA α1a and NKA α1b isoform amino acid (aa) sequences were compared through phylogeny and regarding key functional motifs between salmonids and other acanthomorph species. Analysis of aa sequences of both isoforms revealed a high degree of conservation across teleosts. The expression pattern of both nka α1a and nka α1b was measured in the gill, kidney and posterior intestine of fish in seawater (SW) and transferred to fresh water (FW) at different exposure times. Nka α1a was more expressed than nka α1b whatever the condition and the tissue analyzed. After long-term salinity acclimation (2.5 years) either in FW or SW, transcript levels of nka α1a were higher in the kidney followed by the posterior intestine and the gill. Compared to SW conditions, expression of nka α1a in FW was significantly increased or decreased, respectively, in gill and posterior intestine. In contrast, branchial nka α1b was significantly decreased in FW-acclimated fish. Short-term FW acclimation seems to rapidly increase nka α1a transcript levels in the kidney unlike in gill tissues where different gene expression levels are detected only after long-term acclimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armesto P, Campinho MA, Rodríguez-Rúa A, Cousin X, Power DM, Manchado M, Infante C (2014) Molecular characterization and transcriptional regulation of the Na+/K+ ATPase α subunit isoforms during development and salinity challenge in a teleost fish, the Senegalese sole (Solea senegalensis). Comp Biochem Physiol B Biochem Mol Biol 175:23–38

    Article  CAS  PubMed  Google Scholar 

  • Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A et al (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnabé G (1989) L’élevage du loup et de la daurade. In: Barnabé G (ed) Aquaculture. Technique et Documentation-Lavoisier, Paris, pp 675–720

    Google Scholar 

  • Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    CAS  PubMed  Google Scholar 

  • Breves JP, McCormick SD, Karlstrom RO (2014a) Prolactin and teleost ionocytes: New insights into cellular and molecular targets of prolactin in vertebrate epithelia. Gen Comp Endocrinol 203:21–28

    Article  CAS  PubMed  Google Scholar 

  • Breves JP, Seale AP, Moorman BP, Lerner DT, Moriyama S, Hopkins KD, Grau EG (2014b) Pituitary control of branchial NCC, NKCC and Na+, K+-ATPase alpha-subunit gene expression in Nile tilapia, Oreochromis niloticus. J Comp Physiol B 184:513–523

    Article  CAS  PubMed  Google Scholar 

  • Bublitz M, Poulsen H, Morth JP, Nissen P (2010) In and out of the cation pumps: P-Type ATPase structure revisited. Curr Opin Struct Biol 20:431–439

    Article  CAS  PubMed  Google Scholar 

  • Bystriansky JS, Richards JG, Schulte PM, Ballantyne JS (2006) Reciprocal expression of gill Na+/K+-ATPase alpha-subunit isoforms alpha1a and alpha1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. J Exp Biol 209:1848–1858

    Article  CAS  PubMed  Google Scholar 

  • Chang CY, Tang CH, Hsin YH, Lai HT, Lee TH (2014) FXYD2c plays a potential role in modulating Na+/K+-ATPase activity in HK-2 cells upon hypertonic challenge. J Membr Biol 247:93–105

    Article  CAS  PubMed  Google Scholar 

  • Ching B, Woo JM, Hiong KM, Boo MV, Choo CYL, Wong WP, Chew SF, Ip YK (2015) Na+/K+-ATPase α-subunit (nkaα) isoforms and their mRNA expression levels, overall nkaα protein abundance, and kinetic properties of nka in the skeletal muscle and three electric organs of the electric eel, electrophorus electricus. PLoS ONE 10:e0118352. doi:10.1371/journal.pone.0118352

    Article  PubMed  PubMed Central  Google Scholar 

  • Daly SE, Lane LK, Blostein R (1994) Functional consequences of amino-terminal diversity of the catalytic subunit of the Na,K-ATPase. J Biol Chem 269:23944–23948

    CAS  PubMed  Google Scholar 

  • Dalziel AC, Bittman J, Mandic M, Ou M, Schulte PM (2014) Origins and functional diversification of salinity-responsive Na+, K+ ATPase alpha1 paralogs in salmonids. Mol Ecol 11:12828

    Google Scholar 

  • Evans DH (2008) Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol Regul Integr Comp Physiol 295:R704–R713

    Article  CAS  PubMed  Google Scholar 

  • Evans D, Clairborne JB (2009) Osmotic and ionic regulation in fishes. In: Evans DH (ed) Osmotic and ionic regulation: cells and animals. CRC Press, Boca Raton, pp 295–366

  • Féraille E, Carranza ML, Gonin S, Béguin P, Pedemonte C, Rousselot M, Caverzasio J, Geering K, Martin PY, Favre H (1999) Insulin-induced stimulation of Na+, K+-ATPase activity in kidney proximal tubule cells depends on phosphorylation of the alpha-subunit at Tyr-10. Mol Biol Cell 10:2847–2859

    Article  PubMed  PubMed Central  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SeaView and Phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    CAS  PubMed  Google Scholar 

  • Geering K (2006) FXYD proteins: new regulators of Na-K-ATPase. Am J Physiol Renal Physiol 290:F241–F250

    Article  CAS  PubMed  Google Scholar 

  • Giffard-Mena I, Lorin-Nebel C, Charmantier G, Castille R, Boulo V (2008) Adaptation of the sea-bass (Dicentrarchus labrax) to fresh water: role of aquaporins and Na+/K+-ATPases. Comp Biochem Physiol A Mol Integr Physiol 150:332–338

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hickman CP, Trump BF (1969) The kidney. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic Press, New York, pp 91–239

    Google Scholar 

  • Ip YK, Loong AM, Kuah JS, Sim EW, Chen XL, Wong WP, Lam SH, Delgado IL, Wilson JM et al (2012) Roles of three branchial Na+-K+-ATPase alpha-subunit isoforms in freshwater adaptation, seawater acclimation, and active ammonia excretion in Anabas testudineus. Am J Physiol Regul Integr Comp Physiol 303:23

    Article  Google Scholar 

  • Jensen MK, Madsen SS, Kristiansen K (1998) Osmoregulation and salinity effects on the expression and activity of Na+, K+-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). J Exp Zool 282:290–300

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen PL (2008) Importance for absorption of Na+ from freshwater of lysine, valine and serine substitutions in the alpha1a-isoform of Na, K-ATPase in the gills of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). J Membr Biol 223:37–47

    Article  CAS  PubMed  Google Scholar 

  • Liao B-K, Chen R-D, Hwang P-P (2009) Expression regulation of Na+-K+-ATPase α1-subunit subtypes in zebrafish gill ionocytes. Am J Physiol Regul Integr Comp Physiol 296:R1897–R1906

    Article  CAS  PubMed  Google Scholar 

  • Lorin-Nebel C, Boulo V, Bodinier C, Charmantier G (2006) The Na+/K+/2 Cl cotransporter in the sea-bass Dicentrarchus labrax during ontogeny: Involvement in osmoregulation. J Exp Biol 209:4908–4922

    Article  CAS  PubMed  Google Scholar 

  • Madsen SS, Kiilerich P, Tipsmark CK (2009) Multiplicity of expression of Na+, K+-ATPase α-subunit isoforms in the gill of Atlantic salmon (Salmo salar): cellular localisation and absolute quantification in response to salinity change. J Exp Biol 212:78–88

    Article  CAS  PubMed  Google Scholar 

  • McCormick SD, Regish AM, Christensen AK (2009) Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. J Exp Biol 212:3994–4001

    Article  CAS  PubMed  Google Scholar 

  • Mobasheri A, Avila J, Cózar-Castellano I, Brownleader MD, Trevan M, Francis MJ, Lamb JF, Martín-Vasallo P (2000) Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep 20:51–91

    Article  CAS  PubMed  Google Scholar 

  • Møller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta BBA Rev Biomembr 1286:1–51

    Article  Google Scholar 

  • Moorman BP, Lerner DT, Grau EG, Seale AP (2015) The effects of acute salinity challenges on osmoregulation in Mozambique tilapia reared in a tidally changing salinity. J Exp Biol 218:731–739

    Article  PubMed  Google Scholar 

  • Morth JP, Pedersen BP, Toustrup-Jensen MS, Sørensen TL-M, Petersen J, Andersen JP, Vilsen B, Nissen P (2007) Crystal structure of the sodium–potassium pump. Nature 450:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Nebel C, Nègre-Sadargues G, Blasco C, Charmantier G (2005a) Morphofunctional ontogeny of the urinary system of the European sea bass Dicentrarchus labrax. Anat Embryol 209:193–206

    Article  PubMed  Google Scholar 

  • Nebel C, Romestand B, Nègre-Sadargues G, Grousset E, Aujoulat F, Bacal J, Bonhomme F, Charmantier G (2005b) Differential freshwater adaptation in juvenile sea-bass Dicentrarchus labrax : Gill and urinary system involvement. J Exp Biol 208:3859–3871

    Article  CAS  PubMed  Google Scholar 

  • Nilsen TO, Ebbesson LO, Madsen SS, McCormick SD, Andersson E, Bjornsson BT, Prunet P, Stefansson SO (2007) Differential expression of gill Na+ , K+-ATPase alpha- and beta-subunits, Na+, K+, 2Cl-cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar. J Exp Biol 210:2885–2896

    Article  CAS  PubMed  Google Scholar 

  • Nugent T, Jones DT (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinform 10:159

    Article  Google Scholar 

  • Ogawa H, Toyoshima C (2002) Homology modeling of the cation binding sites of Na+K+-ATPase. Proc Natl Acad Sci 99:15977–15982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickett GD, Pawson MG (1994) Biology and Ecology. In: Pitcher TJ (ed.) Sea Bass. Biology, exploitation and conservation. Chapman & Hall, London, pp 9–146

  • Pressley TA (1992) Phylogenetic conservation of isoform-specific regions within alpha-subunit of Na+-K+-ATPase. Am J Physiol Cell Physiol 262:C743–C751

    CAS  Google Scholar 

  • Richards JG, Semple JW, Bystriansky JS, Schulte PM (2003) Na+/K+-ATPase alpha-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J Exp Biol 206:4475–4486

    Article  CAS  PubMed  Google Scholar 

  • Scott GR, Richards JG, Forbush B, Isenring P, Schulte PM (2004) Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am J Physiol Cell Physiol 287:24

    Article  Google Scholar 

  • Shinoda T, Ogawa H, Cornelius F, Toyoshima C (2009) Crystal structure of the sodium–potassium pump at 2.4 Å resolution. Nature 459:446–450

    Article  CAS  PubMed  Google Scholar 

  • Shull GE, Greeb J, Lingrel JB (1986) Molecular cloning of three distinct forms of the Na+ , K+ -ATPase alpha-subunit from rat brain. Biochemistry (Mosc.) 25:8125–8132

    Article  CAS  Google Scholar 

  • Sundh H, Nilsen TO, Lindstrom J, Hasselberg-Frank L, Stefansson SO, McCormick SD, Sundell K (2014) Development of intestinal ion-transporting mechanisms during smoltification and seawater acclimation in Atlantic salmon Salmo salar. J Fish Biol 85:1227–1252

    Article  CAS  PubMed  Google Scholar 

  • Sweadner KJ (1979) Two molecular forms of (Na++ K+)-stimulated ATPase in brain. Separation, and difference in affinity for strophanthidin. J Biol Chem 254:6060–6067

    CAS  PubMed  Google Scholar 

  • Tang CH, Chiu YH, Tsai SC, Lee TH (2009) Relative changes in the abundance of branchial Na+/K+-ATPase alpha-isoform-like proteins in marine euryhaline milkfish (Chanos chanos) acclimated to environments of different salinities. J Exp Zool A Ecol Genet Physiol 311:521–529

    PubMed  Google Scholar 

  • Tang C-H, Lai D-Y, Lee T-H (2012) Effects of salinity acclimation on Na+/K+–ATPase responses and FXYD11 expression in the gills and kidneys of the Japanese eel (Anguilla japonica). Comp Biochem Physiol A Mol Integr Physiol 163:302–310

    Article  CAS  PubMed  Google Scholar 

  • Tine M, Kuhl H, Gagnaire P-A, Louro B, Desmarais E, Martins RST, Hecht J, Knaust F, Belkhir K et al (2014) European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat Commun 5:5770. doi:10.1038/ncomms6770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tipsmark CK (2008) Identification of FXYD protein genes in a teleost: tissue-specific expression and response to salinity change. Am J Physiol Regul Integr Comp Physiol 294:R1367–R1378

    Article  CAS  PubMed  Google Scholar 

  • Tipsmark CK, Sorensen KJ, Hulgard K, Madsen SS (2010) Claudin-15 and -25b expression in the intestinal tract of Atlantic salmon in response to seawater acclimation, smoltification and hormone treatment. Comp Biochem Physiol A Mol Integr Physiol 155:361–370

    Article  PubMed  Google Scholar 

  • Tipsmark CK, Breves JP, Seale AP, Lerner DT, Hirano T, Grau EG (2011) Switching of Na+, K+-ATPase isoforms by salinity and prolactin in the gill of a cichlid fish. J Endocrinol 209:237–244

    Article  CAS  PubMed  Google Scholar 

  • Urbina M, Schulte P, Bystriansky J, Glover C (2013) Differential expression of Na+, K+-ATPase α-1 isoforms during seawater acclimation in the amphidromous galaxiid fish Galaxias maculatus. J Comp Physiol B 183:345–357

    Article  CAS  PubMed  Google Scholar 

  • Varsamos S, Connes R, Diaz JP, Barnabé G, Charmantier G (2001) Ontogeny of osmoregulation in the European sea bass Dicentrarchus labrax L. Mar Biol 138:909–915

    Article  Google Scholar 

  • Varsamos S, Wendelaar Bonga SE, Charmantier G, Flik G (2004) Drinking and Na+/K+ ATPase activity during early development of European sea bass, Dicentrarchus labrax: Ontogeny and short-term regulation following acute salinity changes. J Exp Mar Biol Ecol 311:189–200

    Article  CAS  Google Scholar 

  • Varsamos S, Xuereb B, Commes T, Flik G, Spanings-Pierrot C (2006) Pituitary hormone mRNA expression in European sea bass Dicentrarchus labrax in seawater and following acclimation to fresh water. J Endocrinol 191:473–480

    Article  CAS  PubMed  Google Scholar 

  • Wang PJ, Lin CH, Hwang HH, Lee TH (2008) Branchial FXYD protein expression in response to salinity change and its interaction with Na+/K+-ATPase of the euryhaline teleost Tetraodon nigroviridis. J Exp Biol 211:3750–3758

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X (2008) GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics 7:1598–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank E. Desmarais UMR 5554, Institut des Sciences de l’Evolution de Montpellier (ISEM) for giving us access to the European sea bass D. labrax genome database and for his help in the sequence analyses. The authors also would like to thank V. Boulo for initiating the nka gene sequence research in the European sea bass.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Lorin-Nebel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Supplementary amino acid sequences used in phylogenetic analyses (DOCX 23 kb)

Table S2

Predicted phosphorylation sites in the different analyzed species according to GPS3, compared to previously referenced phosphorylation sites in rat (ref. P06685) using Uniprot database (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blondeau-Bidet, E., Bossus, M., Maugars, G. et al. Molecular characterization and expression of Na+/K+-ATPase α1 isoforms in the European sea bass Dicentrarchus labrax osmoregulatory tissues following salinity transfer. Fish Physiol Biochem 42, 1647–1664 (2016). https://doi.org/10.1007/s10695-016-0247-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0247-x

Keywords

Navigation