Advertisement

Fish Physiology and Biochemistry

, Volume 42, Issue 2, pp 711–747 | Cite as

Contaminant-induced oxidative stress in fish: a mechanistic approach

  • Volodymyr I. LushchakEmail author
Article

Abstract

The presence of reactive oxygen species (ROS) in living organisms was described more than 60 years ago and virtually immediately it was suggested that ROS were involved in various pathological processes and aging. The state when ROS generation exceeds elimination leading to an increased steady-state ROS level has been called “oxidative stress.” Although ROS association with many pathological states in animals is well established, the question of ROS responsibility for the development of these states is still open. Fish represent the largest group of vertebrates and they inhabit a broad range of ecosystems where they are subjected to many different aquatic contaminants. In many cases, the deleterious effects of contaminants have been connected to induction of oxidative stress. Therefore, deciphering of molecular mechanisms leading to such contaminant effects and organisms’ response may let prevent or minimize deleterious impacts of oxidative stress. This review describes general aspects of ROS homeostasis, in particular highlighting its basic aspects, modification of cellular constituents, operation of defense systems and ROS-based signaling with an emphasis on fish systems. A brief introduction to oxidative stress theory is accompanied by the description of a recently developed classification system for oxidative stress based on its intensity and time course. Specific information on contaminant-induced oxidative stress in fish is covered in sections devoted to such pollutants as metal ions (particularly iron, copper, chromium, mercury, arsenic, nickel, etc.), pesticides (insecticides, herbicides, and fungicides) and oil with accompanying pollutants. In the last section, certain problems and perspectives in studies of oxidative stress in fish are described.

Keywords

Oxidative damage Insecticides Herbicides Fungicides Oil Reactive oxygen species Antioxidants 

Abbreviations

ACh

Acetylcholine

AMT

3-Amino-1,2,4-triazole (aminotriazole)

2,4-D

2,4-Dichlorophenoxyacetate

DDC

Diethyldithiocarbamate

DPXs

DNA–protein cross-links

DTT

Dithiothreitol

ETC

Electron-transport chain

GPx

Glutathione peroxidase

GSH, GSSG

Reduced and oxidized glutathione, respectively

GST

Glutathione-S-transferase

HCB

Hexachlorobenzene

MDA

Malonic dialdehyde

NAC

N-Acetylcysteine

OP

Organophosphate pesticides

RNS

Reactive nitrogen species

ROS

Reactive oxygen species

SOD

Superoxide dismutase

TBARS

Thiobarbituric acid-reactive substances

Notes

Acknowledgments

The author is grateful to Drs. H. Semchshyn and O. Stolyar for critical reading of the manuscript, to J. M. Storey for editorial review of the manuscript and three reviewers whose very professional, detailed, critical and constructive analysis helped to improve the paper substantially.

References

  1. Abele D (2005) Hypoxic regulation and oxidative stress in marine invertebrates and fish. Symposium talk, society of experimental biology, annual main meeting, 10–15 July, Barcelona, SpainGoogle Scholar
  2. Ahmad I, Maria VL, Oliveira M, Pacheco M, Santos MA (2006) Oxidative stress and genotoxic effects in gill and kidney of Anguilla anguilla L. exposed to chromium with or without pre-exposure to β-naphthoflavone. Mut Res 608:16–28CrossRefGoogle Scholar
  3. Alvarez-Pellitero P (2008) Fish immunity and parasite infections: from innate immunity to immunoprophylactic prospects. Vet Immunol Immunopathol 126:171–198PubMedCrossRefGoogle Scholar
  4. Andersen O, Pantopoulos K, Kao HT, Muckenthaler M, Youson JH, Pieribone V (1998) Regulation of iron metabolism in the sanguivore lamprey Lampetra fluviatilis—molecular cloning of two ferritin subunits and two iron-regulatory proteins (IRP) reveals evolutionary conservation of the iron-regulatory element (IRE)/IRP regulatory system. Eur J Biochem 254:223–229PubMedCrossRefGoogle Scholar
  5. Arillo A, Melodia F (1990) Protective effect of fish mucus against Cr(VI) pollution. Chemosphere 20:397–402CrossRefGoogle Scholar
  6. Arukwe A, Förlin L, Goksøyr A (1997) Xenobiotic and steroid biotransformation enzymes in Atlantic salmon (Salmo salar) liver treated with an estrogenic compound, 4-nonylphenol. Environ Toxicol Chem 16:2576–2583CrossRefGoogle Scholar
  7. Atamaniuk TM, Kubrak OI, Storey KB, Lushchak VI (2013) Oxidative stress as a mechanism for toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D): studies with goldfish gills. Ecotoxicology 22:1498–1508PubMedCrossRefGoogle Scholar
  8. Atamaniuk TM, Kubrak OI, Husak VV, Storey KB, Lushchak VI (2014) The Mancozeb-containing carbamate fungicide tattoo induces mild oxidative stress in goldfish brain, liver, and kidney. Environ Toxicol 29:1227–1235PubMedGoogle Scholar
  9. Ayer A, Gourlay CW, Dawes IW (2014) Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae. FEMS Yeast Res 14(1):60–72PubMedCrossRefGoogle Scholar
  10. Baatrup E (1991) Structural and functional effects of heavy metals on the nervous system, including sense organs, of fish. Comp Biochem Physiol 100:253–257Google Scholar
  11. Babich H, Palace MR, Stern A (1993) Oxidative stress in fish cells: in vitro studies. Arch Environ Contam Toxicol 24:173–178PubMedCrossRefGoogle Scholar
  12. Babior BM (1984) The respiratory burst of phagocytes. J Clin Invest 73(3):599–601PubMedPubMedCentralCrossRefGoogle Scholar
  13. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744PubMedPubMedCentralCrossRefGoogle Scholar
  14. Babior BM, Curnutte JT, Kipnes RS (1975) Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthine oxidase. J Lab Clin Med 85:235–244PubMedGoogle Scholar
  15. Bagnyukova TV, Storey KB, Lushchak VI (2005a) Adaptive response of antioxidant enzymes to catalase inhibition by aminotriazole in goldfish liver and kidney. Comp Biochem Physiol B: Biochem Mol Biol 142:335–341CrossRefGoogle Scholar
  16. Bagnyukova TV, Vasylkiv OY, Storey KB, Lushchak VI (2005b) Catalase inhibition by aminotriazole induces oxidative stress in goldfish brain. Brain Res 1052:180–186PubMedCrossRefGoogle Scholar
  17. Bagnyukova TV, Chahrak OI, Lushchak VI (2006) Coordinated response of goldfish antioxidant defenses to environmental stress. Aquat Toxicol 78:325–331PubMedCrossRefGoogle Scholar
  18. Bagnyukova TV, Luzhna LI, Pogribny IP, Lushchak VI (2007) Oxidative stress and antioxidant defenses in goldfish liver in response to short-term exposure to arsenite. Environ Mol Mutagen 48:658–665PubMedCrossRefGoogle Scholar
  19. Baker RTM, Martin P, Davies SJ (1997) Ingestion of sub-lethal levels of iron sulphate by African catfish affects growth and tissue lipid peroxidation. Aquat Toxicol 40:51–61CrossRefGoogle Scholar
  20. Baldridge CW, Gerard RW (1933) The extra respiration of phagocytosis. Am J Physiol 103(1):235–236Google Scholar
  21. Bartosz G (2009) Reactive oxygen species: destroyers or messengers? Biochem Pharmacol 77(8):1303–1315PubMedCrossRefGoogle Scholar
  22. Bayliak M, Gospodaryov D, Semchyshyn H, Lushchak V (2008) Inhibition of catalase by aminotriazole in vivo results in reduction of glucose-6-phosphate dehydrogenase activity in Saccharomyces cerevisiae cells. Biochemistry (Mosc). 73(4):420–426PubMedCrossRefGoogle Scholar
  23. Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366PubMedCrossRefGoogle Scholar
  24. Berntssen MHG, Aatland A, Handy RD (2003) Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat Toxicol 65:55–72PubMedCrossRefGoogle Scholar
  25. Blewett TA, Wood CM (2015) Salinity-dependent nickel accumulation and oxidative stress responses in the euryhaline killifish (Fundulus heteroclitus). Arch Environ Contam Toxicol 68:382–394PubMedCrossRefGoogle Scholar
  26. Bocci V, Borrelli E, Travagli V, Zanardi I (2009) The ozone paradox: ozone is a strong oxidant as well as a medical drug. Med Res Rev 29:646–682PubMedCrossRefGoogle Scholar
  27. Boscolo Papo M, Bertotto D, Pascoli F, Locatello L, Vascellari M, Poltronieri C, Quaglio F, Radaelli G (2014) Induction of brown cells in Venerupis philippinarum exposed to benzo(a)pyrene. Fish Shellfish Immunol 40(1):233–238PubMedCrossRefGoogle Scholar
  28. Brannian JD, Zhao Y, Burbach JA (1997) Localization of lipid peroxidation-derived protein epitopes in the porcine corpus luteum. Biol Reprod 57:1461–1466PubMedCrossRefGoogle Scholar
  29. Bretaud S, Lee S, Guo S (2004) Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol Teratol 26:857–864PubMedCrossRefGoogle Scholar
  30. Briggs RT, Karnovsky ML, Karnovsky MJ (1977) Hydrogen peroxide production in chronic granulomatous disease. A cytochemical study of reduced pyridine nucleotide oxidases. J Clin Invest 59:1088–1098PubMedPubMedCentralCrossRefGoogle Scholar
  31. Britigan BE, Cohen MS, Rosen GM (1987) Detection of the production of oxygen-centered free radicals by human neutrophils using spin trapping techniques: a critical perspective. J Leukoc Biol 41:349–362PubMedGoogle Scholar
  32. Bron JE, Sommerville C, Wootten R, Rae GH (2006) Fallowing of marine Atlantic salmon, Salmo salar L., farms as a method for the control of sea lice, Lepeophtheirus salmonis (Kroyer, 1837). J Fish Diseases 16:487–493CrossRefGoogle Scholar
  33. Bury NR, Walker PA, Glover CN (2003) Nutritive metal uptake in teleost fish. J Exp Biol 206:11–23PubMedCrossRefGoogle Scholar
  34. Carriquiriborde P, Handy RD, Davies SJ (2004) Physiological modulation of iron metabolism in rainbow trout (Oncorhynchus mykiss) fed low and high iron diets. J Exp Biol 207:75–86PubMedCrossRefGoogle Scholar
  35. Christman MF, Morgan RW, Jacobson FS, Ames BN (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41:753–762PubMedCrossRefGoogle Scholar
  36. Commoner B, Townsend J, Pake GE (1954) Free radicals in biological materials. Nature 174:689–691PubMedCrossRefGoogle Scholar
  37. Craig PM, Wood CM, McClelland GB (2007) Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 293(5):R1882–R1892PubMedCrossRefGoogle Scholar
  38. Cruz FF, Leite CE, Pereira TC, Bogo MR, Bonan CD, Battastini AM, Campos MM, Morrone FB (2013) Assessment of mercury chloride-induced toxicity and the relevance of P2X7 receptor activation in zebrafish larvae. Comp Biochem Physiol C: Toxicol Pharmacol 158:159–164Google Scholar
  39. Curnutte JT, Babior BM, Karnovsky ML (1979) Fluoride-mediated activation of the respiratory burst in human neutrophils. A reversible process. J Clin Invest 63(4):637–647PubMedPubMedCentralCrossRefGoogle Scholar
  40. Datta S, Saha DR, Ghosh D, Majumdar T, Bhattacharya S, Mazumder S (2007) Sub-lethal concentration of arsenic interferes with the proliferation of hepatocytes and induces in vivo apoptosis in Clarias batrachus L. Comp Biochem Physiol 145:339–349Google Scholar
  41. de Castro MR, Lima JV, de Freitas DP, Valente Rde S, Dummer NS, de Aguiar RB, dos Santos LC, Marins LF, Geracitano LA, Monserrat JM, Barros DM (2009) Behavioral and neurotoxic effects of arsenic exposure in zebrafish (Danio rerio, Teleostei: Cyprinidae). Comp Biochem Physiol C: Toxicol Pharmacol 150:337–342Google Scholar
  42. DeLeve LD, Kaplowitz N (1991) Glutathione metabolism and its role in hepatotoxicity. Pharmacol Ther 52:287–305PubMedCrossRefGoogle Scholar
  43. Demple B (1991) Regulation of bacterial oxidative stress genes. Annu Rev Genet 25:315–337PubMedCrossRefGoogle Scholar
  44. Demple B, Amabile-Cuevas CF (1991) Redox redux: the control of oxidative stress responses. Cell 67:837–839PubMedCrossRefGoogle Scholar
  45. Després C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279–290PubMedPubMedCentralCrossRefGoogle Scholar
  46. Di Giulio RT, Hinton DE (eds) (2008) The toxicology of fishes. CRC Press, Boca RatonGoogle Scholar
  47. Dorts J, Bauwin A, Kestemont P, Jolly S, Sanchez W, Silvestre F (2012) Proteasome and antioxidant responses in Cottus gobio during a combined exposure to heat stress and cadmium. Comp Biochem Physiol C: Toxicol Pharmacol 155(2):318–324Google Scholar
  48. Dorval J, Hontela A (2003) Role of glutathione redox cycle and catalase in defense against oxidative stress induced by endosulfan in adrenocortical cells of rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol 192:191–200PubMedCrossRefGoogle Scholar
  49. Drath DB, Karnovsky ML (1975) Superoxide production by phagocytic leukocytes. J Exp Med 141:257–262PubMedCrossRefGoogle Scholar
  50. Elseady Y, Zahran E (2013) Ameliorating effect of β-carotene on antioxidant response and hematological parameters of mercuric chloride toxicity in Nile tilapia (Oreochromis niloticus). Fish Physiol Biochem 39:1031–1041PubMedCrossRefGoogle Scholar
  51. Elvitigala DA, Premachandra HK, Whang I, Oh MJ, Jung SJ, Park CJ, Lee J (2013) A teleostean counterpart of ferritin M subunit from rock bream (Oplegnathus fasciatus): an active constituent in iron chelation and DNA protection against oxidative damage, with a modulated expression upon pathogen stress. Fish Shellfish Immunol 35:1455–1465PubMedCrossRefGoogle Scholar
  52. Eyckmans M, Celis N, Horemans N, Blust R, De Boeck G (2011) Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species. Aquat Toxicol 103(1–2):112–120PubMedCrossRefGoogle Scholar
  53. Falfushynska HI, Stolyar OB (2009) Responses of biochemical markers in carp Cyprinus carpio from two field sites in Western Ukraine. Ecotoxicol Environ Saf 72:729–736PubMedCrossRefGoogle Scholar
  54. Falfushynska HI, Gnatyshyna LL, Stoliar OB, Nam YK (2011) Various responses to copper and manganese exposure of Carassius auratus gibelio from two populations. Comp Biochem Physiol C: Toxicol Pharmacol 154(3):242–253Google Scholar
  55. Falfushynska HI, Gnatyshyna LL, Stoliar OB (2012) Population-related molecular responses on the effect of pesticides in Carassius auratus gibelio. Comp Biochem Physiol C: Toxicol Pharmacol 155(2):396–406Google Scholar
  56. Farag AM, May T, Marty GD, Easton M, Harper DD, Little EE, Cleveland L (2006) The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha). Aquat Toxicol 76:246–257PubMedCrossRefGoogle Scholar
  57. Fatima M, Mandiki SN, Douxfils J, Silvestre F, Coppe P, Kestemont P (2007) Combined effects of herbicides on biomarkers reflecting immune-endocrine interactions in goldfish. Immune and antioxidant effects. Aquat Toxicol 81(2):159–167PubMedCrossRefGoogle Scholar
  58. Fedotcheva NI, Litvinova EG, Amerkhanov ZG, Kamzolova SV, Morgunov IG, Kondrashova MN (2008) Increase in the contribution of transamination to the respiration of mitochondria during arousal. Cryo Letters 29:35–42PubMedGoogle Scholar
  59. Filipak Neto F, Zanata SM, Silva de Assis HC, Nakao LS, Randi MA, Oliveira Ribeiro CA (2008) Toxic effects of DDT and methyl mercury on the hepatocytes from Hoplias malabaricus. Toxicol In Vitro 22:1705–1713PubMedCrossRefGoogle Scholar
  60. Fritsche KL, Johnston PV (1988) Rapid autoxidation of fish oil in diets without added antioxidants. J Nutr 118(4):425–426PubMedGoogle Scholar
  61. Fukunaga K, Nakazono N, Suzuki T, Takama K (1999) Mechanism of oxidative damage to fish red blood cells by ozone. IUBMB Life 48:631–634PubMedCrossRefGoogle Scholar
  62. Furchgott RF, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3:2007–2018PubMedGoogle Scholar
  63. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376PubMedCrossRefGoogle Scholar
  64. García-Niño WR, Pedraza-Chaverrí J (2014) Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 69:182–201PubMedCrossRefGoogle Scholar
  65. Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO (1954) Oxygen poisoning and X-irradiation: a mechanism in common. Science 119:62362–62366CrossRefGoogle Scholar
  66. Glusczak L, dos Santos Miron D, Crestani M, Braga da Fonseca M, de Araújo Pedron F, Duarte MF, Vieira VL (2006) Effect of glyphosate herbicide on acetylcholinesterase activity and metabolic and hematological parameters in piava (Leporinus obtusidens). Ecotoxicol Environ Saf 65:237–241PubMedCrossRefGoogle Scholar
  67. Glusczak L, dos Santos Miron D, Moraes BS, Simxes RR, Schetinger MR, Morsch VM, Loro VL (2007) Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comp Biochem Physiol 146:519–524Google Scholar
  68. Goksøyr A, Förlin L (1992) The cytochrome P450 system in fish, aquatic toxicology and environmental monitoring. Aquat Toxicol 22:287–312CrossRefGoogle Scholar
  69. Gomberg M (1900) An instance of trivalent carbon: triphenylmethyl. J Am Chem Soc 22:757–771CrossRefGoogle Scholar
  70. Gonzalez MJ, Gray JI, Schemmel RA, Dugan L Jr, Welsch CW (1992) Lipid peroxidation products are elevated in fish oil diets even in the presence of added antioxidants. J Nutr 122(11):2190–2195PubMedGoogle Scholar
  71. Griguer CE, Oliva CR, Kelley EE, Giles GI, Lancaster JR Jr, Gillespie GY (2006) Xanthine oxidase-dependent regulation of hypoxia-inducible factor in cancer cells. Cancer Res 66:2257–2263PubMedCrossRefGoogle Scholar
  72. Grygoryev D, Moskalenko O, Zimbrick JD (2008) Non-linear effects in the formation of DNA damage in medaka fish fibroblast cells caused by combined action of cadmium and ionizing radiation. Dose Response 6:283–298PubMedPubMedCentralCrossRefGoogle Scholar
  73. Guallar E, Sanz-Gallardo MI, van’t Veer P, Bode P, Aro A, Gomez-Aracena J, Kark JD, Riemersma RA, Martin-Moreno JM, Kok FJ (2002) Heavy metals and myocardial infarction study group. Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med 347:1747–1754PubMedCrossRefGoogle Scholar
  74. Hai DQ, Varga SI, Matkovics B (1997a) Organophosphate effects on antioxidant system of carp (Cyprinus carpio) and catfish (Ictalurus nebulosus). Comp Biochem Physiol 117:83–88Google Scholar
  75. Hai DQ, Varga SI, Matkovics B (1997b) Effects of diethyl-dithiocarbamate on antioxidant system in carp tissue. Acta Biol Hung 48:1–8PubMedGoogle Scholar
  76. Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon Press, OxfordGoogle Scholar
  77. Hansen BH, Rømma S, Søfteland LI, Olsvik PA, Andersen RA (2006a) Induction and activity of oxidative stress-related proteins during waterborne Cu-exposure in brown trout (Salmo trutta). Chemosphere 65:1707–1714PubMedCrossRefGoogle Scholar
  78. Hansen BH, Rømma S, Garmo ØA, Olsvik PA, Andersen RA (2006b) Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp Biochem Physiol C: Toxicol Pharmacol 143:263–274Google Scholar
  79. Harada T, Yamaguchi S, Ohtsuka R, Takeda M, Fujisawa H, Yoshida T, Enomoto A, Chiba Y, Fukumori J, Kojima S, Tomiyama N, Saka M, Ozaki M, Maita K (2003) Mechanisms of promotion and progression of preneoplastic lesions in hepatocarcinogenesis by DDT in F344 rats. Toxicol Pathol 31:87–98PubMedCrossRefGoogle Scholar
  80. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedCrossRefGoogle Scholar
  81. Harman D (2009) Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. Biogerontology 10:773–781PubMedCrossRefGoogle Scholar
  82. Hasselberg L, Meier S, Svardal A (2004a) Effects of alkylphenols on redox status in first spawning Atlantic cod (Gadus morhua). Aquat Toxicol 69:95–105PubMedCrossRefGoogle Scholar
  83. Hasselberg L, Meier S, Svardal A, Hegelund T, Celander MC (2004b) Effects of alkylphenols on CYP1A and CYP3A expression in first spawning Atlantic cod (Gadus morhua). Aquat Toxicol 67:303–313PubMedCrossRefGoogle Scholar
  84. Hébert N, Gagné F, Cejka P, Bouchard B, Hausler R, Cyr DG, Blaise C, Fournier M (2008) Effects of ozone, ultraviolet and peracetic acid disinfection of a primary-treated municipal effluent on the immune system of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C: Toxicol Pharmacol 148:122–127Google Scholar
  85. Hermes-Lima M, Willmore WG, Storey KB (1995) Quantification of lipid peroxidation in tissue extracts based on Fe(III) xylenol orange complex formation. Free Radic Biol Med 19:271–280PubMedCrossRefGoogle Scholar
  86. Ho NY, Yang L, Legradi J, Armant O, Takamiya M, Rastegar S, Strähle U (2013) Gene responses in the central nervous system of zebrafish embryos exposed to the neurotoxicant methyl mercury. Environ Sci Technol 47:3316–3325PubMedCrossRefGoogle Scholar
  87. Hook SE, Skillman AD, Small JA, Schultz IR (2006) Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants. Aquat Toxicol 77:372–385PubMedPubMedCentralCrossRefGoogle Scholar
  88. Hoyle I, Shaw BJ, Handy RD (2007) Dietary copper exposure in the African walking catfish, Clarias gariepinus: transient osmoregulatory disturbances and oxidative stress. Aquat Toxicol 83:62–72PubMedCrossRefGoogle Scholar
  89. Hua Y, Clark S, Ren J, Sreejayan N (2012) Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem 23:313–319PubMedPubMedCentralCrossRefGoogle Scholar
  90. Hughes EM, Gallagher EP (2004) Effects of 17-[beta] estradiol and 4-nonylphenol on phase II electrophilic detoxification pathways in largemouth bass (Micropterus salmoides) liver. Comp Biochem Physiol 137:237–247CrossRefGoogle Scholar
  91. Husak VV, Mosiichuk NM, Maksymiv IV, Sluchyk IY, Storey JM, Storey KB, Lushchak VI (2014) Histopathological and biochemical changes in goldfish kidney due to exposure to the herbicide Sencor may be related to induction of oxidative stress. Aquat Toxicol 155:181–189PubMedCrossRefGoogle Scholar
  92. Itoh K, Ishii T, Wakabayashi N, Yamamoto M (1999) Regulatory mechanisms of cellular response to oxidative stress. Free Radic Res 31:319–324PubMedCrossRefGoogle Scholar
  93. Jha AN (2008) Ecotoxicological applications and significance of the comet assay. Mutagenesis 23:207–221PubMedCrossRefGoogle Scholar
  94. Jiang WD, Liu Y, Hu K, Jiang J, Li SH, Feng L, Zhou XQ (2014) Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain: protective effects of myo-inositol. Aquat Toxicol 155:301–313PubMedCrossRefGoogle Scholar
  95. Jiang WD, Liu Y, Jiang J, Wu P, Feng L, Zhou XQ (2015) Copper exposure induces toxicity to the antioxidant system via the destruction of Nrf2/ARE signaling and caspase-3-regulated DNA damage in fish muscle: amelioration by myo-inositol. Aquat Toxicol 159:245–255PubMedCrossRefGoogle Scholar
  96. Johannsson OE, Bergman HL, Wood CM, Laurent P, Kavembe DG, Bianchini A, Maina JN, Chevalier C, Bianchini LF, Papah MB, Ojoo RO (2014) Air breathing in the Lake Magadi tilapia Alcolapia grahami, under normoxic and hyperoxic conditions, and the association with sunlight and ROS. J Fish Biol 84:844–863PubMedCrossRefGoogle Scholar
  97. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107PubMedGoogle Scholar
  98. Kalia K, Narulaa GD, Kannan GM, Flora SJS (2007) Effects of combined administration of captopril and DMSA on arsenite induced oxidative stress and blood and tissue arsenic concentration in rats. Comp Biochem Physiol 144:372–379Google Scholar
  99. Karaytug S, Sevgiler Y, Karayakar F (2014) Comparison of the protective effects of antioxidant compounds in the liver and kidney of Cd- and Cr-exposed common carp. Environ Toxicol 29:129–137PubMedCrossRefGoogle Scholar
  100. Kayode SJ, Chidimma UI, Alwell EE (2014) Response of some antioxidant parameters in post juveniles of Clarias gariepinus after exposure to nigerian crude oil (Forcados, Bonny Light and Qua-Iboe). Pak J Biol Sci 17:1225–1230PubMedCrossRefGoogle Scholar
  101. Kim JH, Kang JC (2015) The arsenic accumulation and its effect on oxidative stress responses in juvenile rockfish, Sebastes schlegelii, exposed to waterborne arsenic (As3+). Environ Toxicol Pharmacol 39:668–676PubMedCrossRefGoogle Scholar
  102. Kubrak OI, Lushchak VI (2011) Chromium toxicity: free radical aspects. In: Salden MP (ed) Chromium: environmental, medical and materials studies. Nova Science Pub Inc, Hauppauge, pp 29–56Google Scholar
  103. Kubrak OI, Lushchak OV, Lushchak JV, Torous IM, Storey JM, Storey KB, Lushchak VI (2010) Chromium effects on free radical processes in goldfish tissues: comparison of Cr(III) and Cr(VI) exposures on oxidative stress markers, glutathione status and antioxidant enzymes. Comp Biochem Physiol C: Toxicol Pharmacol 152:360–370Google Scholar
  104. Kubrak OI, Atamaniuk TM, Husak VV, Drohomyretska IZ, Storey JM, Storey KB, Lushchak VI (2012a) Oxidative stress responses in blood and gills of Carassius auratus exposed to the mancozeb-containing carbamate fungicide Tattoo. Ecotoxicol Environ Saf 85:37–43PubMedCrossRefGoogle Scholar
  105. Kubrak OI, Rovenko BM, Husak VV, Storey JM, Storey KB, Lushchak VI (2012b) Nickel induces hyperglycemia and glycogenolysis and affects the antioxidant system in liver and white muscle of goldfish Carassius auratus L. Ecotoxicol Environ Saf 80:231–237PubMedCrossRefGoogle Scholar
  106. Kubrak OI, Husak VV, Rovenko BM, Poigner H, Mazepa MA, Kriews M, Abele D, Lushchak VI (2012c) Tissue specificity in nickel uptake and induction of oxidative stress in kidney and spleen of goldfish Carassius auratus, exposed to water borne nickel. Aquat Toxicol 118–119:88–96PubMedCrossRefGoogle Scholar
  107. Kubrak OI, Husak VV, Rovenko BM, Poigner H, Kriews M, Abele D, Lushchak VI (2013a) Antioxidant system efficiently protects goldfish gills from Ni2+-induced oxidative stress. Chemosphere 90:971–976PubMedCrossRefGoogle Scholar
  108. Kubrak OI, Atamaniuk TM, Storey KB, Lushchak VI (2013b) Goldfish can recover after short-term exposure to 2,4-dichlorophenoxyacetate: use of blood parameters as vital biomarkers. Comp Biochem Physiol C: Toxicol Pharmacol 157:259–265Google Scholar
  109. Kubrak OI, Atamaniuk TM, Husak VV, Lushchak VI (2013c) Transient effects of 2,4-dichlorophenoxyacetic acid (2,4-D) exposure on some metabolic and free radical processes in goldfish white muscle. Food Chem Toxicol 59:356–361PubMedCrossRefGoogle Scholar
  110. Kubrak OI, Poigner H, Husak VV, Rovenko BM, Meyer S, Abele D, Lushchak VI (2014) Goldfish brain and heart are well protected from Ni2+-induced oxidative stress. Comp Biochem Physiol C: Toxicol Pharmacol 162:43–50Google Scholar
  111. Kuge S, Jones N (1994) YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13:655–664PubMedPubMedCentralGoogle Scholar
  112. Kumar P, Kumar R, Nagpure NS, Nautiyal P, Kushwaha B, Dabas A (2013) Genotoxicity and antioxidant enzyme activity induced by hexavalent chromium in Cyprinus carpio after in vivo exposure. Drug Chem Toxicol 36:451–460PubMedCrossRefGoogle Scholar
  113. Kuykendall JR, Miller KL, Mellinger KN, Cain AV (2006) Waterborne and dietary hexavalent chromium exposure causes DNA-protein crosslink (DPX) formation in erythrocytes of largemouth bass (Micropterus salmoides). Aquat Toxicol 78:27–31PubMedCrossRefGoogle Scholar
  114. Lamarre SG, Le François NR, Driedzic WR, Blier PU (2009) Protein synthesis is lowered while 20S proteasome activity is maintained following acclimation to low temperature in juvenile spotted wolffish (Anarhichas minor Olafsen). J Exp Biol 212:1294–1301PubMedCrossRefGoogle Scholar
  115. Lange A, Ausseil O, Segner H (2002) Alterations of tissue glutathione levels and metallothionein mRNA in rainbow trout during single and combined exposure to cadmium and zinc. Comp Biochem Physiol 131C:231–245Google Scholar
  116. Lemaire P, Matthews A, Förlin L, Livingstone DR (1994) Stimulation of oxyradical production of hepatic microsomes of flounder (Platichthys flesus) and perch (Perca fluviatilis) by model and pollutant xenobiotics. Arch Environ Contam Toxicol 26:191–200PubMedCrossRefGoogle Scholar
  117. Li ZH, Li P, Randak T (2011) Evaluating the toxicity of environmental concentrations of waterborne chromium (VI) to a model teleost, Oncorhynchus mykiss: a comparative study of in vivo and in vitro. Comp Biochem Physiol C: Toxicol Pharmacol 153:402–407Google Scholar
  118. Li M, Zheng Y, Liang H, Zou L, Sun J, Zhang Y, Qin F, Liu S, Wang Z (2013a) Molecular cloning and characterization of cat, gpx1 and Cu/Zn-sod genes in pengze crucian carp (Carassius auratus var. Pengze) and antioxidant enzyme modulation induced by hexavalent chromium in juveniles. Comp Biochem Physiol C: Toxicol Pharmacol 157:310–321Google Scholar
  119. Li ZH, Zlabek V, Velisek J, Grabic R, Machova J, Kolarova J, Li P, Randak T (2013b) Multiple biomarkers responses in juvenile rainbow trout, Oncorhynchus mykiss, after acute exposure to a fungicide propiconazole. Environ Toxicol 28:119–126PubMedCrossRefGoogle Scholar
  120. Liu H, Wang W, Zhang JF, Wang XR (2006) Effects of copper and its ethylenediaminetetraacetate complex on the antioxidant defenses of the goldfish, Carassius auratus. Ecotoxicol Environ Safety 65:350–354PubMedCrossRefGoogle Scholar
  121. Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666PubMedCrossRefGoogle Scholar
  122. Lloyd DR, Phillips DH (1999) Oxidative DNA damage mediated by copper (II), iron (II) and nickel (II) fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links. Mutat Res 424:23–36PubMedCrossRefGoogle Scholar
  123. Loro VL, Jorge MB, Rios da Silva K, Wood CM (2012) Oxidative stress parameters and antioxidant response to sublethal waterborne zinc in a euryhaline teleost Fundulus heteroclitus: protective effects of salinity. Aquat Toxicol 110–111:187–193PubMedCrossRefGoogle Scholar
  124. Lushchak VI (2001) Oxidative stress and mechanisms of protection against it in bacteria. Biochemistry (Mosc) 66:476–489CrossRefGoogle Scholar
  125. Lushchak VI (2007) Free radical oxidation of proteins and its relationship with functional state of organisms. Biochemistry (Mosc) 72:809–827CrossRefGoogle Scholar
  126. Lushchak VI (2008) Oxidative stress as a component of transition metal toxicity in fish. In: Svensson EP (ed) Aquatic toxicology research focus. Nova Science Publishers Inc, Hauppaug, pp 1–29Google Scholar
  127. Lushchak VI (2010) Oxidative stress in yeast. Biochemistry (Mosc) 75(3):346–364CrossRefGoogle Scholar
  128. Lushchak VI (2011a) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol C: Toxicol Pharmacol 153:175–190Google Scholar
  129. Lushchak VI (2011b) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30PubMedCrossRefGoogle Scholar
  130. Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. doi: 10.1155/2012/736837 PubMedPubMedCentralGoogle Scholar
  131. Lushchak VI (2014a) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175CrossRefGoogle Scholar
  132. Lushchak VI (2014b) Classification of oxidative stress based on its intensity. EXCLI J 13:922–937PubMedPubMedCentralGoogle Scholar
  133. Lushchak VI, Bagnyukova TV (2006a) Effects of different environmental oxygen levels on free radical processes in fish. Comp Biochem Physiol B: Biochem Mol Biol 144:283–289CrossRefGoogle Scholar
  134. Lushchak VI, Bagnyukova TV (2006b) Temperature increase results in oxidative stress in goldfish tissues. 1. Indices of oxidative stress. Comp Biochem Physiol C: Toxicol Pharmacol 143:30–35Google Scholar
  135. Lushchak VI, Bagnyukova TV (2007) Hypoxia induces oxidative stress in tissues of a goby, the rotan Perccottus glenii. Comp Biochem Physiol B: Biochem Mol Biol 148:390–397CrossRefGoogle Scholar
  136. Lushchak VI, Lushchak LP, Mota AA, Hermes-Lima M (2001) Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am J Physiol Regul Integr Comp Physiol 280:100–107Google Scholar
  137. Lushchak OV, Bahniukova TV, Lushchak VI (2003) Effect of aminotriazole on the activity of catalase and glucose-6-phosphate dehydrogenase in tissues of two frog species—Rana ridibunda and Rana esculenta. Ukr Biokhim Zh 75(4):45–50Google Scholar
  138. Lushchak VI, Bagnyukova TV, Husak VV, Luzhna LI, Lushchak OV, Storey KB (2005a) Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int J Biochem Cell Biol 37:1670–1680PubMedCrossRefGoogle Scholar
  139. Lushchak VI, Bagnyukova TV, Lushchak OV, Storey JM, Storey KB (2005b) Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. Int J Biochem Cell Biol 37:1319–1330PubMedCrossRefGoogle Scholar
  140. Lushchak V, Semchyshyn H, Lushchak O, Mandryk S (2005c) Diethyldithiocarbamate inhibits in vivo Cu, Zn-superoxide dismutase and perturbs free radical processes in yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 338(4):1739–1744PubMedCrossRefGoogle Scholar
  141. Lushchak VI, Bagnyukova TV, Lushchak OV, Storey JM, Storey KB (2007) Diethyldithiocarbamate injection induces transient oxidative stress in goldfish tissues. Chem Biol Interact 170:1–8PubMedCrossRefGoogle Scholar
  142. Lushchak OV, Kubrak OI, Nykorak MZ, Storey KB, Lushchak VI (2008) The effect of potassium dichromate on free radical processes in goldfish: possible protective role of glutathione. Aquat Toxicol 87:108–114PubMedCrossRefGoogle Scholar
  143. Lushchak OV, Kubrak OI, Torous IM, Nazarchuk TY, Storey KB, Lushchak VI (2009a) Trivalent chromium induces oxidative stress in goldfish brain. Chemosphere 75:56–62PubMedCrossRefGoogle Scholar
  144. Lushchak OV, Kubrak OI, Lozinsky OV, Storey JM, Storey KB, Lushchak VI (2009b) Chromium (III) induces oxidative stress in goldfish liver and kidney. Aquat Toxicol 93:45–52PubMedCrossRefGoogle Scholar
  145. Lushchak OV, Kubrak OI, Storey JM, Storey KB, Lushchak VI (2009c) Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues. Chemosphere 76:932–937PubMedCrossRefGoogle Scholar
  146. Lushchak OV, Piroddi M, Galli F, Lushchak VI (2014) Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep 19:8–15PubMedCrossRefGoogle Scholar
  147. Machado AA, Hoff ML, Klein RD, Cardozo JG, Giacomin MM, Pinho GL, Bianchini A (2013) Biomarkers of waterborne copper exposure in the guppy Poecilia vivipara acclimated to salt water. Aquat Toxicol 138–139:60–69PubMedCrossRefGoogle Scholar
  148. Maksymiv IV, Husak VV, Mosiichuk NM, Matviishyn TM, Sluchyk IY, Storey JM, Storey KB, Lushchak VI (2015) Hepatotoxicity of herbicide Sencor in goldfish may result from induction of mild oxidative stress. Pestic Biochem Physiol 122:67–75PubMedCrossRefGoogle Scholar
  149. Malek RL, Sajadi H, Abraham J, Grundy MA, Gerhard GS (2004) The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish. Comp Biochem Physiol C: Toxicol Pharmacol 138:363–373CrossRefGoogle Scholar
  150. Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11(11):2685–2700PubMedPubMedCentralCrossRefGoogle Scholar
  151. Maroni M, Colosio C, Ferioli A, Fait A (2000) Biological monitoring of pesticide exposure: a review. Toxicology 143:1–118PubMedCrossRefGoogle Scholar
  152. Matviishyn TM, Kubrak OI, Husak VV, Storey KB, Lushchak VI (2014) Tissue-specific induction of oxidative stress in goldfish by 2,4-dichlorophenoxyacetic acid: mild in brain and moderate in liver and kidney. Environ Toxicol Pharmacol 37:861–869PubMedCrossRefGoogle Scholar
  153. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055PubMedGoogle Scholar
  154. Michaelis L (1939) Free radicals as intermediate steps of oxidation-reduction. Cold Spring Harb Symp Quant Biol 7:33–49CrossRefGoogle Scholar
  155. Michail K, Baghdasarian A, Narwaley M, Aljuhani N, Siraki AG (2013) Scavenging of free-radical metabolites of aniline xenobiotics and drugs by amino acid derivatives: toxicological implications of radical-transfer reactions. Chem Res Toxicol 26:1872–1883PubMedCrossRefGoogle Scholar
  156. Miller JW, Selhub J, Joseph JA (1996) Oxidative damage caused by free radicals produced during catecholamine autoxidation: protective effects of O-methylation and melatonin. Free Radic Biol Med 21:241–249PubMedCrossRefGoogle Scholar
  157. Monaghan BR, Schmitt FO (1932) The effects of carotene and of vitamin A on the oxidation of linoleic acid. J Biol Chem 96:387–395Google Scholar
  158. Monteiro DA, Rantin FT, Kalinin AL (2009) The effects of selenium on oxidative stress biomarkers in the freshwater characid fish matrinxã, Brycon cephalus (Günther, 1869) exposed to organophosphate insecticide Folisuper 600 BR (methyl parathion). Comp Biochem Physiol C: Toxicol Pharmacol 149:40–49Google Scholar
  159. Monteiro DA, Rantin FT, Kalinin AL (2013) Dietary intake of inorganic mercury: bioaccumulation and oxidative stress parameters in the neotropical fish Hoplias malabaricus. Ecotoxicology 22:446–456PubMedCrossRefGoogle Scholar
  160. Morgan RW, Christman MF, Jacobson FS, Storz G, Ames BN (1986) Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc Natl Acad Sci USA 83:8059–8063PubMedPubMedCentralCrossRefGoogle Scholar
  161. Mu X, Chai T, Wang K, Zhang J, Zhu L, Li X, Wang C (2015) Occurrence and origin of sensitivity toward difenoconazole in zebrafish (Danio rerio) during different life stages. Aquat Toxicol 160:57–68PubMedCrossRefGoogle Scholar
  162. Muenzer J, Weinbach EC, Wolfe SM (1975) Oxygen consumption of human blood platelets. II. Effect of inhibitors on thrombin-induced oxygen burst. Biochim Biophys Acta 376:243–248PubMedCrossRefGoogle Scholar
  163. Mukhopadhyay D, Srivastava R, Chattopadhyay A (2015) Sodium fluoride generates ROS and alters transcription of genes for xenobiotic metabolizing enzymes in adult zebrafish (Danio rerio) liver: expression pattern of Nrf2/Keap1 (INrf2). Toxicol Mech Methods 23:1–10Google Scholar
  164. Mürer EH (1968) Release reaction and energy metabolism in blood platelets with special reference to the burst in oxygen uptake. Biochim Biophys Acta 162(3):320–326PubMedCrossRefGoogle Scholar
  165. Nanduri J, Vaddi DR, Khan SA, Wang N, Makerenko V, Prabhakar NR (2013) Xanthine oxidase mediates hypoxia-inducible factor-2α degradation by intermittent hypoxia. PLoS ONE 8:e75838PubMedPubMedCentralCrossRefGoogle Scholar
  166. Narahari J, Ma R, Wang M, Walden WE (2000) The aconitase function of iron regulatory protein 1. Genetic studies in yeast implicate its role in iron-mediated redox regulation. J Biol Chem 275:16227–16234PubMedCrossRefGoogle Scholar
  167. Navas JM, Chana A, Herradón B, Segner H (2003) Induction of CYP1A by the N-imidazole derivative, 1-benzylimidazole. Environ Toxicol Chem 22(4):830–836PubMedCrossRefGoogle Scholar
  168. Niki E (2000) Free radicals in the 1900’s: from in vitro to in vivo. Free Radic Res 33(6):693–704PubMedCrossRefGoogle Scholar
  169. Nikinmaa M, Pursiheimo S, Soitamo AJ (2004) Redox state regulates HIF-1alpha and its DNA binding and phosphorylation in salmonid cells. J Cell Sci 117(Pt 15):3201–3206PubMedCrossRefGoogle Scholar
  170. Nunes B, Caldeira C, Pereira JL, Gonçalves F, Correia AT (2015) Perturbations in ROS-related processes of the fish Gambusia holbrooki after acute and chronic exposures to the metals copper and cadmium. Environ Sci Pollut Res Int 22:3756–3765PubMedCrossRefGoogle Scholar
  171. Ohno M, Oka S, Nakabeppu Y (2009) Quantitative analysis of oxidized Guanine, 8-oxoguanine, in mitochondrial DNA by immunofluorescence method. Methods Mol Biol 554:199–212PubMedCrossRefGoogle Scholar
  172. Olcott HS, Mattill HA (1931a) The unsaponifiable lipids of lettuce. II Fractionation. J Biol Chem 93:59–64Google Scholar
  173. Olcott HS, Mattill HA (1931b) The unsaponifiable lipids of lettuce. III Antioxidant. J Biol Chem 93:65–70Google Scholar
  174. Olinski R, Rozalski R, Gackowski D, Foksinski M, Siomek A, Cooke MS (2006) Urinary measurement of 8-OxodG, 8-OxoGua, and 5HMUra: a noninvasive assessment of oxidative damage to DNA. Antioxid Redox Signal 8:1011–1019PubMedCrossRefGoogle Scholar
  175. Olsvik PA, Kristensen T, Waagbø R, Rosseland BO, Tollefsen KE, Baeverfjord G, Berntssen MH (2005) mRNA expression of antioxidant enzymes (SOD, CAT and GSH-Px) and lipid peroxidative stress in liver of Atlantic salmon (Salmo salar) exposed to hyperoxic water during smoltification. Comp Biochem Physiol C: Toxicol Pharmacol 141:314–323CrossRefGoogle Scholar
  176. Olsvik PA, Kristensen T, Waagbø R, Tollefsen KE, Rosseland BO, Toften H (2006) Effects of hypo- and hyperoxia on transcription levels of five stress genes and the glutathione system in liver of Atlantic cod Gadus morhua. J Exp Biol 209:2893–2901PubMedCrossRefGoogle Scholar
  177. Opperman DJ, Piater LA, van Heerden E (2008) A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J Bacteriol 190:3076–3082PubMedPubMedCentralCrossRefGoogle Scholar
  178. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922PubMedCrossRefGoogle Scholar
  179. Pacheco M, Santos MA, Pereira P, Martínez JI, Alonso PJ, Soares MJ, Lopes JC (2013) EPR detection of paramagnetic chromium in liver of fish (Anguilla anguilla) treated with dichromate (VI) and associated oxidative stress responses-contribution to elucidation of toxicity mechanisms. Comp Biochem Physiol C: Toxicol Pharmacol 157:132–140Google Scholar
  180. Palermo FF, Risso WE, Simonato JD, Martinez CB (2015) Bioaccumulation of nickel and its biochemical and genotoxic effects on juveniles of the neotropical fish Prochilodus lineatus. Ecotoxicol Environ Saf 116:19–28PubMedCrossRefGoogle Scholar
  181. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526PubMedCrossRefGoogle Scholar
  182. Palmer RM, Rees DD, Ashton DS, Moncada S (1988) L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 153:1251–1256PubMedCrossRefGoogle Scholar
  183. Parvez S, Raisuddin S (2006) Effects of paraquat on the freshwater fish Channa punctata (Bloch): non-enzymatic antioxidants as biomarkers of exposure. Arch Environ Contam Toxicol 50:392–397PubMedCrossRefGoogle Scholar
  184. Passantino L, Santamaria N, Zupa R, Pousis C, Garofalo R, Cianciotta A, Jirillo E, Acone F, Corriero A (2014) Liver melanomacrophage centres as indicators of Atlantic bluefin tuna, Thunnus thynnus L. well-being. J Fish Dis 37(3):241–250PubMedCrossRefGoogle Scholar
  185. Peca-Llopis S, Peca JB, Sancho E, Fernandez-Vega C, Ferrando MD (2001) Glutathione-dependent resistance of the European eel Anguilla anguilla to the herbicide molinate. Chemosphere 45:671–681CrossRefGoogle Scholar
  186. Peca-Llopis S, Ferrando MD, Peca JB (2003a) Increased recovery of brain acetylcholinesterase activity in dichlorvos-intoxicated European eels Anguilla anguilla by bath treatment with N-acetylcysteine. Dis Aquat Organ 55:237–245CrossRefGoogle Scholar
  187. Peca-Llopis S, Ferrando MD, Peca JB (2003b) Fish tolerance to organophosphate-induced oxidative stress is dependent on the glutathione metabolism and enhanced by N-acetylcysteine. Aquat Toxicol 65:337–360CrossRefGoogle Scholar
  188. Pedrajas JR, Peinado J, Lypez-Barea J (1995) Oxidative stress in fish exposed to model xenobiotics. Oxidatively modified forms of Cu, Zn-superoxide dismutase as potential biomarkers. Chem Biol Interact 98:267–282PubMedCrossRefGoogle Scholar
  189. Perez-Benito JF (2006) Effects of chromium (VI) and vanadium (V) on the lifespan of fish. J Trace Elem Med Biol 20:161–170PubMedCrossRefGoogle Scholar
  190. Perkhulyn NV, Rovenko BM, Zvarych TV, Lushchak OV, Storey JM, Storey KB, Lushchak VI (2015) Sodium chromate demonstrates some insulin-mimetic properties in the fruit fly Drosophila melanogaster. Comp Biochem Physiol C: Toxicol Pharmacol 167:74–80Google Scholar
  191. Pierron F, Baudrimont M, Gonzalez P, Bourdineaud JP, Elie P, Massabuau JC (2007) Common pattern of gene expression in response to hypoxia or cadmium in the gills of the European glass eel (Anguilla anguilla). Environ Sci Technol 41:3005–3011PubMedCrossRefGoogle Scholar
  192. Piner P, Sevgiler Y, Uner N (2007) In vivo effects of fenthion on oxidative processes by the modulation of glutathione metabolism in the brain of Oreochromis niloticus. Environ Toxicol 22:605–612PubMedCrossRefGoogle Scholar
  193. Ransberry VE, Morash AJ, Blewett TA, Wood CM, McClelland GB (2015) Oxidative stress and metabolic responses to copper in freshwater- and seawater-acclimated killifish, Fundulus heteroclitus. Aquat Toxicol 161:242–252PubMedCrossRefGoogle Scholar
  194. Rath NC, Rasaputra KS, Liyanage R, Huff GR, Huff WE (2011) Dithiocarbamate toxicity—an appraisal. In: Stoytcheva M (ed) Pesticides in the modern world—effects of pesticides exposure. In Tech Open Access Publisher, pp 323–340Google Scholar
  195. Ribeiro C, Fernandes L, Carvlaho C, Cardoso R, Tucatti N (1995) Acute effects of mercuric chloride on the olfactory epithelium of Trichomycterus brasiliensis. Ecotoxicol Environ Saf 31:104–109PubMedCrossRefGoogle Scholar
  196. Rooney JP (2007) The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology 234(3):145–156PubMedCrossRefGoogle Scholar
  197. Rosety M, Rosety-Rodríguez M, Ordonez FJ, Rosety I (2005) Time course variations of antioxidant enzyme activities and histopathology of gilthead seabream gills exposed to malathion. Histol Histopathol 20:1017–1020PubMedGoogle Scholar
  198. Rossi F, Della Bianca V, de Togni P (1985) Mechanisms and functions of the oxygen radicals producing respiration of phagocytes. Comp Immunol Microbiol Infect Dis 8:187–204PubMedCrossRefGoogle Scholar
  199. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414PubMedCrossRefGoogle Scholar
  200. Rudneva I (2013) Biomarkers for stress in fish embryos and larvae. CRC Press, Boca ratonCrossRefGoogle Scholar
  201. Rudneva II, Skuratovskaya EN, Kuzminova NS, Kovyrshina TB (2010) Age composition and antioxidant enzyme activities in blood of Black Sea teleosts. Comp Biochem Physiol C: Toxicol Pharmacol 151(2):229–239Google Scholar
  202. Ruiz-Leal M, George S (2004) An in vitro procedure for evaluation of early stage oxidative stress in an established fish cell line applied to investigation of PHAH and pesticide toxicity. Mar Environ Res 58:631–635PubMedCrossRefGoogle Scholar
  203. Saller S, Merz-Lange J, Raffael S, Hecht S, Pavlik R, Thaler C, Berg D, Berg U, Kunz L, Mayerhofer A (2012) Norepinephrine, active norepinephrine transporter, and norepinephrine-metabolism are involved in the generation of reactive oxygen species in human ovarian granulosa cells. Endocrinology 153(3):1472–1483PubMedCrossRefGoogle Scholar
  204. Salonen JT, Seppanen K, Nyyssonen K, Korpela H, Kauhanen J, Kantola M, Tuomilehto J, Esterbauer H, Tatzber F, Salonen R (1995) Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish men. Circulation 91:645–655PubMedCrossRefGoogle Scholar
  205. Sanchez W, Piccini B, Porcher JM (2008) Effect of prochloraz fungicide on biotransformation enzymes and oxidative stress parameters in three-spined stickleback (Gasterosteus aculeatus L.). J Environ Sci Health B 43:65–70PubMedCrossRefGoogle Scholar
  206. Sappal R, MacDonald N, Fast M, Stevens D, Kibenge F, Siah A, Kamunde C (2014) Interactions of copper and thermal stress on mitochondrial bioenergetics in rainbow trout, Oncorhynchus mykiss. Aquat Toxicol 157:10–20PubMedCrossRefGoogle Scholar
  207. Sarkar S, Mukherjee S, Chattopadhyay A, Bhattacharya S (2014) Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: expression of antioxidant genes. Ecotoxicol Environ Saf 107:1–8PubMedCrossRefGoogle Scholar
  208. Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014PubMedCrossRefGoogle Scholar
  209. Schlenk D, Wolford L, Chelius M, Steevens J, Chan KM (1997) Effect of arsenite, arsenate, and the herbicide monosodium methyl arsonate (MSMA) on hepatic metallothionein expression and lipid peroxidation in channel catfish. Comp Biochem Physiol 118:177–183CrossRefGoogle Scholar
  210. Semchyshyn H, Bagnyukova T, Storey K, Lushchak V (2005) Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli. Cell Biol Int 29:898–902PubMedCrossRefGoogle Scholar
  211. Seok SH, Baek MW, Lee HY, Kim DJ, Na YR, Noh KJ, Park SH, Lee HK, Lee BH, Ryu DY, Park JH (2007) Arsenite-induced apoptosis is prevented by antioxidants in zebrafish liver cell line. Toxicol In Vitro 21:870–877PubMedCrossRefGoogle Scholar
  212. Shi X, Dalal NS (1990) On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium (V) species. Arch Biochem Biophys 277:342–350PubMedCrossRefGoogle Scholar
  213. Shih TM, McDonough JH (1997) Neurochemical mechanisms in soman-induced seizures. J Appl Toxicol 17:255–264PubMedCrossRefGoogle Scholar
  214. Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (ed) Oxidative Stress. Academic Press, London, pp 1–8CrossRefGoogle Scholar
  215. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91(3C):31S–38SPubMedCrossRefGoogle Scholar
  216. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4:180–183PubMedPubMedCentralCrossRefGoogle Scholar
  217. Skulachev VP (2012) Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases. J Alzheimers Dis 28:283–289PubMedGoogle Scholar
  218. Smeets JM, van Holsteijn I, Giesy JP, van den Berg M (1999) The anti-estrogenicity of Ah receptor agonists in carp (Cyprinus carpio) hepatocytes. Toxicol Sci 52:178–188PubMedCrossRefGoogle Scholar
  219. Soares SS, Gutiérrez-Merino C, Aureliano M (2007) Mitochondria as a target for decavanadate toxicity in Sparus aurata heart. Aquat Toxicol 83:1–9PubMedCrossRefGoogle Scholar
  220. Song SB, Xu Y, Zhou BS (2006) Effects of hexachlorobenzene on antioxidant status of liver and brain of common carp (Cyprinus carpio). Chemosphere 65:699–706PubMedCrossRefGoogle Scholar
  221. Spagnoli A, Spadoni GL, Sesti G, Del Principe D, Germani D, Boscherini B (1995) Effect of insulin on hydrogen peroxide production by human polymorphonuclear leukocytes. Studies with monoclonal anti-insulin receptor antibodies, and an agonist and an inhibitor of protein kinase C. Horm Res 43:286–293PubMedCrossRefGoogle Scholar
  222. Stephensen E, Sturve J, Förlin L (2002) Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver. Comp Biochem Physiol C: Toxicol Pharmacol 133:435–442Google Scholar
  223. Storey KB (1996) Oxidative stress: animal adaptations in nature. Braz J Med Biol Res 29:1715–1733PubMedGoogle Scholar
  224. Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microb 2:188–194CrossRefGoogle Scholar
  225. Stout MD, Herbert RA, Kissling GE, Collins BJ, Travlos GS, Witt KL, Melnick RL, Abdo KM, Malarkey DE, Hooth MJ (2009) Hexavalent chromium is carcinogenic to F344/N rats and B6C3F1 mice after chronic oral exposure. Environ Health Perspect 117:716–722PubMedPubMedCentralCrossRefGoogle Scholar
  226. Sturve J, Hasselberg L, Fälth H, Celander M, Förlin L (2006) Effects of North Sea oil and alkylphenols on biomarker responses in juvenile Atlantic cod (Gadus morhua). Aquat Toxicol 78:73–78CrossRefGoogle Scholar
  227. Talas ZS, Orun I, Ozdemir I, Erdogan K, Alkan A, Yilmaz I (2008) Antioxidative role of selenium against the toxic effect of heavy metals (Cd+2, Cr+3) on liver of rainbow trout (Oncorhynchus mykiss Walbaum 1792). Fish Physiol Biochem 34:217–222PubMedCrossRefGoogle Scholar
  228. Tartaglia LA, Storz G, Ames BN (1989) Identification and molecular analysis of oxyR-regulated promoters important for the bacterial adaptation to oxidative stress. J Mol Biol 210:709–719PubMedCrossRefGoogle Scholar
  229. Thomaz JM, Martins ND, Monteiro DA, Rantin FT, Kalinin AL (2009) Cardio-respiratory function and oxidative stress biomarkers in Nile tilapia exposed to the organophosphate insecticide trichlorfon (NEGUVON). Ecotoxicol Environ Saf 72:1413–1424PubMedCrossRefGoogle Scholar
  230. Toledano MB, Kumar C, Le Moan N, Spector D, Tacnet F (2007) The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett 581:3598–3607PubMedCrossRefGoogle Scholar
  231. Toone WM, Jones N (1999) AP-1 transcription factors in yeast. Curr Opin Genet Dev 9:55–61PubMedCrossRefGoogle Scholar
  232. Topal A, Atamanalp M, Oruç E, Halıcı MB, Şişecioğlu M, Erol HS, Gergit A, Yılmaz B (2015) Neurotoxic effects of nickel chloride in the rainbow trout brain: assessment of c-Fos activity, antioxidant responses, acetylcholinesterase activity, and histopathological changes. Fish Physiol Biochem 41:625–634PubMedCrossRefGoogle Scholar
  233. Uguz C, Iscan M, Erguven A, Isgor B, Togan I (2003) The bioaccumulation of nonyphenol and its adverse effect on the liver of rainbow trout (Onchorynchus mykiss). Environ Res 92:262–270PubMedCrossRefGoogle Scholar
  234. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208PubMedCrossRefGoogle Scholar
  235. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84PubMedCrossRefGoogle Scholar
  236. van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149PubMedCrossRefGoogle Scholar
  237. Vasylkiv OY, Kubrak OI, Storey KB, Lushchak VI (2010) Cytotoxicity of chromium ions may be connected with induction of oxidative stress. Chemosphere 80:1044–1049PubMedCrossRefGoogle Scholar
  238. Velma V, Tchounwou PB (2013) Oxidative stress and DNA damage induced by chromium in liver and kidney of goldfish, Carassius auratus. Biomark Insights 8:43–51PubMedPubMedCentralGoogle Scholar
  239. Ventura-Lima J, Fattorini D, Regoli F, Monserrat JM (2009) Effects of different inorganic arsenic species in Cyprinus carpio (Cyprinidae) tissues after short-time exposure: bioaccumulation, biotransformation and biological responses. Environ Pollut 157:3479–3484PubMedCrossRefGoogle Scholar
  240. Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17:410–420PubMedCrossRefGoogle Scholar
  241. Viarengo A, Lowe D, Bolognesi C, Fabbri E, Koehler A (2007) The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp Biochem Physiol C: Toxicol Pharmacol 146(3):281–300Google Scholar
  242. Vogelbein WK (2003) Polycyclic aromatic hydrocarbons and liver carcinogenesis in fish. In: Newman MC, Unger MA (eds) Fundamentals of ecotoxicology. CRC Press LLC, Florida, pp 143–145Google Scholar
  243. Walker RL, Fromm PO (1976) Metabolism of iron by normal and iron deficient rainbow trout. Comp Biochem Physiol 55:311–318CrossRefGoogle Scholar
  244. Wang YC, Chaung RH, Tung LC (2004) Comparison of the cytotoxicity induced by different exposure to sodium arsenite in two fish cell lines. Aquat Toxicol 69:67–79PubMedCrossRefGoogle Scholar
  245. Wang M, Wang Y, Zhang L, Wang J, Hong H, Wang D (2013) Quantitative proteomic analysis reveals the mode-of-action for chronic mercury hepatotoxicity to marine medaka (Oryzias melastigma). Aquat Toxicol 130–131:123–131PubMedCrossRefGoogle Scholar
  246. Wang B, Feng L, Jiang WD, Wu P, Kuang SY, Jiang J, Tang L, Tang WN, Zhang YA, Liu Y, Zhou XQ (2015) Copper-induced tight junction mRNA expression changes, apoptosis and antioxidant responses via NF-κB, TOR and Nrf2 signaling molecules in the gills of fish: preventive role of arginine. Aquat Toxicol 158:125–137PubMedCrossRefGoogle Scholar
  247. Willis AM, Oris JT (2014) Acute photo-induced toxicity and toxicokinetics of single compounds and mixtures of polycyclic aromatic hydrocarbons in zebrafish. Environ Toxicol Chem 33(9):2028–2037PubMedCrossRefGoogle Scholar
  248. Winston GW, Di Giulio RT (1991) Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19:137–161CrossRefGoogle Scholar
  249. Wright J, George S, Martinez-Lara E, Carpene E, Kindt M (2000) Levels of cellular glutathione and metallothionein affect the toxicity of oxidative stressors in an established carp cell line. Mar Environ Res 50:503–508PubMedCrossRefGoogle Scholar
  250. Xu H, Lam SH, Shen Y, Gong Z (2013) Genome-wide identification of molecular pathways and biomarkers in response to arsenic exposure in zebrafish liver. PLoS ONE 8:e68737PubMedPubMedCentralCrossRefGoogle Scholar
  251. Yamaguchi T, Kakinuma K, Kaneda M, Shimada K (1980) Comparative studies on alveolar macrophages and polymorphonuclear leukocytes. I. H2O2 and O2-generation by rabbit alveolar macrophages. J Biochem 87:1449–1455PubMedGoogle Scholar
  252. Yeldandi AV, Rao MS, Reddy JK (2000) Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis. Mutat Res 448(2):159–177PubMedCrossRefGoogle Scholar
  253. Yonar ME, Yonar SM, Çoban MZ, Eroğlu M (2014) Antioxidant effect of propolis against exposure to chromium in Cyprinus carpio. Environ Toxicol 29:155–164PubMedCrossRefGoogle Scholar
  254. Yu Q, Zheng WY, Weng Y, Wang CG, Chen R (2003) Response of antioxidase in viscera of Pagrosuma major larvae to water soluble fraction of hydrocarbons in No. 0 diesel oil. J Environ Sci (China) 15:47–54Google Scholar
  255. Zhang X, Yang F, Zhang X, Xu Y, Liao T, Song S, Wang J (2008) Induction of hepatic enzymes and oxidative stress in Chinese rare minnow (Gobiocypris rarus) exposed to waterborne hexabromocyclododecane (HBCDD). Aquat Toxicol 86:4–11PubMedCrossRefGoogle Scholar
  256. Zhao L, Xia Z, Wang F (2014) Zebrafish in the sea of mineral (iron, zinc, and copper) metabolism. Front Pharmacol 5:33PubMedPubMedCentralCrossRefGoogle Scholar
  257. Zheng GH, Liu CM, Sun JM, Feng ZJ, Cheng C (2014) Nickel-induced oxidative stress and apoptosis in Carassius auratus liver by JNK pathway. Aquat Toxicol 147:105–111PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Biochemistry and BiotechnologyVasyl Stefanyk Precarpathian National UniversityIvano-FrankivskUkraine

Personalised recommendations