Skip to main content
Log in

Insights into Trx1, TRP14, and Prx1 homologs of Paralichthys olivaceus: molecular profiles and transcriptional responses to immune stimulations

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Thioredoxin (Trx) proteins are involved in several cellular processes, such as anti-oxidative stress and cellular redox homeostasis. In this study, we isolated the full-length cDNAs of PoTrx1 and PoTRP14 from Japanese flounder (Paralichthys olivaceus). PoTrx1 is 723 bp in length, with a 366-bp open reading frame (ORF) that encodes for 121 amino acids. PoTRP14 is 909 bp in length, with a 372-bp ORF that encodes for 123 amino acids. PoTrx1 and PoTRP14 are highly conserved in Cys–Gly–Pro–Cys and Cys–Pro–Asp–Cys forms, respectively. Tissue distribution analysis revealed that the transcripts of PoTrx1 and PoTRP14 were ubiquitously expressed in all tested tissues and particularly abundant in immunity-related organs, such as the liver, intestine, gill, and spleen. Development expression profiles indicated that PoTrx1 transcript was expressed from the neurula stage to the 1 day post-hatching stage; the maximum transcript levels were recorded at the somatic stage. The mRNA level of PoTRP14 was constantly expressed at all examined developmental stages, reaching the peak at the before-hatching stage. Prx1 is a peroxiredoxin family member that serves similar functions to PoTrx1 and PoTRP14. A primary hepatocyte culture system was established to examine the immunoregulatory properties of PoTrx1, PoTRP14, and Prx1 in response to lipopolysaccharide, CuSO4, and H2O2 stimulation. Results revealed that the transcript levels of PoTrx1, PoTRP14, and Prx1 were significantly up-regulated in a time-dependent manner after the immunostimulant challenge. These data suggest that PoTrx1, PoTRP14, and Prx1 play critical roles in anti-oxidation and immunoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alday-Sanz V, Roque A, Turnbull JF (2002) Clearing mechanisms of Vibrio vulnificus biotype I in the black tiger shrimp Penaeus monodon. Dis Aquat Organ 48:91–99

    Article  CAS  PubMed  Google Scholar 

  • Angelini G, Gardella S, Ardy M, Ciriolo MR, Filomeni G, Di Trapani G (2002) Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci USA 99:1491–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnér ESJ, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  PubMed  Google Scholar 

  • Bishop RE (2005) Fundamentals of endotoxin structure and function. Contrib Microbiol 12:1–27

    Article  CAS  PubMed  Google Scholar 

  • Bogdan C, Röllinghoff M, Diefenbach A (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12:64–76

    Article  CAS  PubMed  Google Scholar 

  • Byon JY, Ohira T, Hirono I, Aoki T (2005) Use of a cDNA microarray to study immunity against viral hemorrhagic septicemia (VHS) in Japanese flounder (Paralichthys olivaceus) following DNA vaccination. Fish Shellfish Immunol 18:135–147

    Article  CAS  PubMed  Google Scholar 

  • Chae HZ, Kim IH, Kim K, Rhee SG (1993) Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J Biol Chem 268:16815–16821

    CAS  PubMed  Google Scholar 

  • Copley SD, Novak WR, Babbitt PC (2004) Divergence of function in the thioredoxin fold superfamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry 43:13981–13995

    Article  CAS  PubMed  Google Scholar 

  • De Zoysa M, Pushpamali WA, Whang I, Kim SJ, Lee J (2008) Mitochondrial thioredoxin-2 from disk abalone (Haliotis discus discus): molecular characterization, tissue expression and DNA protection activity of its recombinant protein. Comp Biochem Phys B 149(4):630–639

    Article  Google Scholar 

  • Debarbieux L, Beckwith J (2000) On the functional interchangeability, oxidant versus reductant, of members of the thioredoxin superfamily. J Bacteriol 182:723–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Didier C, Kerblat I, Drouet C, Favier A, Béani JC, Richard MJ (2001) Induction of thioredoxin by ultraviolet-A radiation prevents oxidative-mediated cell death in human skin fibroblasts. Free Radic Biol Med 31(5):585–598

    Article  CAS  PubMed  Google Scholar 

  • Fuji K, Kobayashi K, Hasegawa O, Coimbra MRM, Okamoto N (2006) Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Aquaculture 254:203–210

    Article  CAS  Google Scholar 

  • Goedken M, De Guise S (2004) Flow cytometry as a tool to quantify oyster defence mechanisms. Fish Shellfish Immunol 16:539–552

    Article  CAS  PubMed  Google Scholar 

  • Hwang SD, Kondo H, Hirono I, Aoki T (2011) Molecular cloning and characterization of toll-like receptor 14 in Japanese flounder, Paralichthys olivaceus. Fish Shellfish Immunol 30:425–429

    Article  CAS  PubMed  Google Scholar 

  • Hwang SD, Ohtani M, Hikima J, Jung TS, Kondo H, Hirono I et al (2012) Molecular cloning and characterization of toll-like receptor 3 in Japanese flounder, Paralichthys olivaceus. Dev Comp Immunol 37:87–96

    Article  CAS  PubMed  Google Scholar 

  • Hwang BO, Kim YK, Nam YK (2014) Effect of hydrogen peroxide exposures on mucous cells and lysozymes of gill tissues of olive flounder Paralichthys olivaeceus. Aquac Res 2014:1–12

    Google Scholar 

  • Jeong W, Yoon HW, Lee SR, Rhee SG (2004) Identification and characterization of TRP14, a thioredoxin-related protein of 14 kDa. New insights into the specificity of thioredoxin function. J Biol Chem 279:3142–3150

    Article  CAS  PubMed  Google Scholar 

  • Khayat M, Stuge TB, Wilson M, Bengtén E, Miller NW, Clem LW (2001) Thioredoxin acts as a B cell growth factor in channel catfish. J Immunol 166:2937–2943

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Kim JW, Jeong JM, Park HJ, Park CI (2011) Molecular cloning and expression analysis of a thioredoxin from rock bream, Oplegnathus fasciatus, and biological activity of the recombinant protein. Fish Shellfish Immunol 31:22–28

    Article  PubMed  Google Scholar 

  • Leyens G, Donnay I, Knoops B (2003) Cloning of bovine peroxiredoxins-gene expression in bovine tissues and amino acid sequence comparison with rat, mouse and primate peroxiredoxins. Comp Biochem Physiol B Biochem Mol Biol 136:943–955

    Article  PubMed  Google Scholar 

  • Li RW, Waldbieser GC (2006) Genomic organisation and expression of the natural killer cell enhancing factor (NKEF) gene in channel catfish, Ictalurus punctatus (Rafinesque). Fish Shellfish Immunol 20:72–82

    Article  CAS  PubMed  Google Scholar 

  • Lillig CH, Holmgren A (2007) Thioredoxin and related molecules from biology to health and disease. Antioxid Redox Signal 9:25–47

    Article  CAS  PubMed  Google Scholar 

  • Ludemann H, Dormeyer M, Sticherling C, Stallmann D, Follmann H, Krauth-Siegel RL (1998) Trypanosoma brucei tryparedoxin, a thioredoxin-like protein in African trypanosomes. FEBS Lett 431:381–385

    Article  CAS  PubMed  Google Scholar 

  • Martin R, Fitzl G, Mozet C, Martin H, Welt K, Wieland E (2002) Effect of age and hypoxia/reoxygenation on mRNA expression of antioxidative enzymes in rat liver and kidney. Exp Gerontol 37:1481–1487

    Article  CAS  PubMed  Google Scholar 

  • Moriarty-Craige SE, Jones DP (2004) Extracellular thiols and thiol/disulfide redox in metabolism. Annu Rev Nutr 24:481–509

    Article  CAS  PubMed  Google Scholar 

  • Mu C, Zhao J, Wang L, Song L, Song X, Zhang H et al (2009) A thioredoxin with antioxidant activity identified from Eriocheir sinensis. Fish Shellfish Immunol 26(5):716–723

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Nakamura K, Yodoi J (1997) Redox regulation of cellular activation. Annu Rev Immunol 15(1):351–369

    Article  CAS  PubMed  Google Scholar 

  • Nho SW, Hikima J, Cha IS, Park SB, Jang HB, del Castillo CS et al (2011) Complete genome sequence and immunoproteomic analyses of the bacterial fish pathogen Streptococcus parauberis. J Bacteriol 193:3356–3366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nkabyo YS, Ziegler TR, Gu LH, Watson WH, Jones DP (2002) Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells. Am J Physiol Gastrointest Liver Physiol 283:1352–1359

    Article  Google Scholar 

  • Ooi EL, Hirono I, Aoki T (2006) Functional characterisation of the Japanese flounder, Paralichthys olivaceus, Mx promoter. Fish Shellfish Immunol 21:293–304

    Article  CAS  PubMed  Google Scholar 

  • Park CI, Jung JH, Shim WJ, Kim JW, Kim EG, Jeong JM et al (2012) Molecular characterization, expression, and functional analysis of two thioredoxins in the black rockfish (Sebastes schlegelii). Fish Shellfish Immunol 32:808–815

    Article  CAS  PubMed  Google Scholar 

  • Powis G, Montfort WR (2001) Properties and biological activities of thioredoxins. Annu Rev Pharmacol Toxicol 4:261–295

    Article  Google Scholar 

  • Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachi Y, Hirota K, Masutani H, Toda K, Oakahashi T, Takigawa M et al (1995) Induction of ADF/TRX by oxidative stress in keratinocytes and lymphoid cells. Immunol Lett 44:189–193

    Article  CAS  PubMed  Google Scholar 

  • Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11(4):173–186

    Article  CAS  PubMed  Google Scholar 

  • Shin DH, Fujiki K, Nakao M, Yano T (2001) Organization of the NKEF gene and its expression in the common carp (Cyprinus carpio). Dev Comp Immunol 25:597–606

    Article  CAS  PubMed  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5(5):415–418

    Article  CAS  PubMed  Google Scholar 

  • Song L, Wang L, Qui L, Zhang H (2010) Bivalve immunity. In: Söderhäll K (ed) Advances in experimental medicine and biology—invertebrate immunity, vol 708. Landes Bioscience, Texas, pp 44–65

    Google Scholar 

  • Spector A, Yan GZ, Huang RR, McDermott MJ, Gascoyne PR, Pigiet V (1988) The effect of H2O2 upon thioredoxin-enriched lens epithelial cells. J Biol Chem 263:4984–4990

    CAS  PubMed  Google Scholar 

  • Sun J, Li Y, Sun L (2012) Cynoglossus semilaevis thioredoxin: a reductase and an antioxidant with immunostimulatory property. Cell Stress Chaperones 17:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanekhy M, Matsuda S, Itano T, Kawakami H, Kono T, Sakai M (2010) Expression of cytokine genes in head kidney and spleen cells of Japanese flounder (Paralichthys olivaceus) infected with Nocardia seriolae. Vet Immunol Immunopathol 134:178–183

    Article  CAS  PubMed  Google Scholar 

  • Tiscar P, Mosca F (2004) Defense mechanisms in farmed marine molluscs. Vet Res Commun 28:57–62

    Article  PubMed  Google Scholar 

  • Touati D (2000) Iron and oxidative stress in bacteria. Arch Biochem Biophys 37:31–36

    Google Scholar 

  • Wahl MC, Irmler A, Hecker B, Schirmer RH, Becker K (2005) Comparative structural analysis of oxidized and reduced thioredoxin from Drosophila melanogaster. J Mol Biol 345:1119–1130

    Article  CAS  PubMed  Google Scholar 

  • Wang XW, Liou YC, Ho B, Ding JL (2007) An evolutionarily conserved 16-kDa thioredoxin-related protein is an antioxidant which regulates the NF-kB signaling pathway. Free Radic Biol Med 42:247–259

    Article  PubMed  Google Scholar 

  • Wei J, Guo M, Ji H, Yan Y, Ouyang Z, Huang X et al (2012) Cloning, characterization, and expression analysis of a thioredoxin from orange-spotted grouper (Epinephelus coioides). Dev Comp Immunol 38:108–116

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Ji H, Guo M, Yan Y, Qin Q (2013) Identification and characterization of TRP14, a thioredoxin-related protein of 14 kDa from orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol 35:1670–1676

    Article  CAS  PubMed  Google Scholar 

  • Wollman EE, D’Auriol L, Rimsky L, Shaw A, Jacquot JP, Wingfield P et al (1988) Cloning and expression of a cDNA for human thioredoxin. J Biol Chem 263:15506–15512

    CAS  PubMed  Google Scholar 

  • Yegorova S, Liu A, Lou MF (2003) Human lens thioredoxin: molecular cloning and functional characterization. Invest Ophthalmol Vis Sci 44:3263–3271

    Article  PubMed  Google Scholar 

  • Zhang P, Liu B, Kang SW, Seo MS, Rhee SG, Obeid LM (1997) Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J Biol Chem 272:30615–30618

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Evenhuis JP, Thorgaard GH, Ristow SS (2001) Cloning, characterization and genomic structure of the natural killer cell enhancement factor (NKEF)-like gene from homozygous clones of rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol 25:25–35

    Article  PubMed  Google Scholar 

  • Zhong Q, Zhang Q, Wang Z, Qi J, Chen Y, Li S et al (2008) Expression profiling and validation of potential reference genes during Paralichthys olivaceus embryogenesis. Mar Biotechnol 10:310–318

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High-Tech Research and Development Program (2012AA10A402) and the National Science Foundation of China (31172385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Jiang, J., Jiang, L. et al. Insights into Trx1, TRP14, and Prx1 homologs of Paralichthys olivaceus: molecular profiles and transcriptional responses to immune stimulations. Fish Physiol Biochem 42, 547–561 (2016). https://doi.org/10.1007/s10695-015-0158-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0158-2

Keywords

Navigation