Skip to main content
Log in

Regulatory roles of grass carp EpCAM in cell morphology, proliferation and migration

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Epithelial cell adhesion molecule (EpCAM) is a Ca2+-independent and relatively weak adhesion molecule, which has been extensively investigated in mammalian models. However, the functional roles of its fish homolog are largely unknown. In the present study, we explored the biological properties of grass carp EpCAM (gcEpCAM) in a fish kidney cell line (CIK) via overexpression of gcEpCAM or gcEpCAM intracellular domain (gcEpICD) deletion mutant. Results showed that gcEpCAM overexpression significantly changed the cell morphology, and the proliferation of the cells transfected with gcEpCAM was significantly decreased when compared to the control cells, which is unexpectedly opposite to the increasing effects induced by its mammalian homolog. Moreover, overexpression of gcEpICD deletion mutant had no effect on cell proliferation, indicating gcEpICD’s involvement in the cell growth control that is concerted with its role in mammalian model. Additionally, gcEpCAM overexpression increased cell migration which is at least partially consistent with the findings in mammalian cells in which EpCAM expression both positively and negatively affects cell migration. It is worth noting that gcEpICD was not essential to the stimulatory effect of gcEpCAM on cell migration, but overexpression of human EpICD in tumor cells increases cell migration, suggesting the functional discrepancy of EpICD in fish and mammals. In conclusion, we elucidated the cellular functionality of EpCAM in fish cells which will be of benefit to defining the functions of fish EpCAM and also provide rewarding information on the functional evolution of EpCAM in vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N (2004) Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA 101:12792–12797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X et al (2014) Overexpression of EpCAM and Trop2 in pituitary adenomas. Int J Clin Exp Pathol 7:7907–7914

    PubMed  PubMed Central  Google Scholar 

  • Dolle L, Theise ND, Schmelzer E, Boulter L, Gires O, van Grunsven LA (2015) EpCAM and the biology of hepatic stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol 308:G233–G250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadhari N, Charnley M, Marelli M, Brugger J, Chiquet M (2013) Cell shape-dependent early responses of fibroblasts to cyclic strain. Biochim Biophys Acta 1833:3415–3425

    Article  CAS  PubMed  Google Scholar 

  • Gires O (2012) EpCAM in hepatocytes and their progenitors. J Hepatol 56:490–492

    Article  CAS  PubMed  Google Scholar 

  • Gompel N, Cubedo N, Thisse C, Thisse B, Dambly-Chaudiere C, Ghysen A (2001) Pattern formation in the lateral line of zebrafish. Mech Dev 105:69–77

    Article  CAS  PubMed  Google Scholar 

  • Jachin S et al (2014) The role of nuclear EpICD in extrahepatic cholangiocarcinoma: association with beta-catenin. Int J Oncol 45:691–698

    CAS  PubMed  Google Scholar 

  • Juliano RL (2002) Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 42:283–323

    Article  CAS  PubMed  Google Scholar 

  • Kilian KA, Bugarija B, Lahn BT, Mrksich M (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci USA 107:4872–4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroepil F et al (2013) High EpCAM expression is linked to proliferation and lauren classification in gastric cancer. BMC Res Notes 6:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333

    Article  CAS  PubMed  Google Scholar 

  • Litvinov SV, Bakker HA, Gourevitch MM, Velders MP, Warnaar SO (1994a) Evidence for a role of the epithelial glycoprotein 40 (Ep-CAM) in epithelial cell–cell adhesion. Cell Adhes Commun 2:417–428

    Article  CAS  PubMed  Google Scholar 

  • Litvinov SV, Velders MP, Bakker HA, Fleuren GJ, Warnaar SO (1994b) Ep-CAM: a human epithelial antigen is a homophilic cell–cell adhesion molecule. J Cell Biol 125:437–446

    Article  CAS  PubMed  Google Scholar 

  • Litvinov SV et al (1997) Epithelial cell adhesion molecule (Ep-CAM) modulates cell–cell interactions mediated by classic cadherins. J Cell Biol 139:1337–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Ma J, Yang Y, Shi W, Luo L (2013) EpCAM is an endoderm-specific Wnt derepressor that licenses hepatic development. Dev Cell 24:543–553

    Article  CAS  PubMed  Google Scholar 

  • Maetzel D et al (2009) Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol 11:162–171

    Article  CAS  PubMed  Google Scholar 

  • Martowicz A, Rainer J, Lelong J, Spizzo G, Gastl G, Untergasser G (2013) EpCAM overexpression prolongs proliferative capacity of primary human breast epithelial cells and supports hyperplastic growth. Mol Cancer 12:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momburg F, Moldenhauer G, Hammerling GJ, Moller P (1987) Immunohistochemical study of the expression of a Mr 34,000 human epithelium-specific surface glycoprotein in normal and malignant tissues. Cancer Res 47:2883–2891

    CAS  PubMed  Google Scholar 

  • Ng VY, Ang SN, Chan JX, Choo AB (2010) Characterization of epithelial cell adhesion molecule as a surface marker on undifferentiated human embryonic stem cells. Stem Cells 28:29–35

    Article  CAS  PubMed  Google Scholar 

  • Osta WA et al (2004) EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res 64:5818–5824

    Article  CAS  PubMed  Google Scholar 

  • Rape AD, Guo WH, Wang YL (2011) The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials 32:2043–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ripani E, Sacchetti A, Corda D, Alberti S (1998) Human Trop-2 is a tumor-associated calcium signal transducer. Int J Cancer 76:671–676

    Article  CAS  PubMed  Google Scholar 

  • Schmelzer E, Reid LM (2008) EpCAM expression in normal, non-pathological tissues. Front Biosci 13:3096–3100

    Article  CAS  PubMed  Google Scholar 

  • Schnell U, Cirulli V, Giepmans BN (2013) EpCAM: structure and function in health and disease. Biochim Biophys Acta 1828:1989–2001

    Article  CAS  PubMed  Google Scholar 

  • Shen CI et al (2014) EpCAM induction functionally links to the Wnt-enhanced cell proliferation in human keratinocytes. Cell Transplant 23:1031–1044

    Article  PubMed  Google Scholar 

  • Slanchev K, Carney TJ, Stemmler MP, Koschorz B, Amsterdam A, Schwarz H, Hammerschmidt M (2009) The epithelial cell adhesion molecule EpCAM is required for epithelial morphogenesis and integrity during zebrafish epiboly and skin development. PLoS Genet 5:e1000563

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang QY, Qian WX, Xu YH, Gopalakrishnan S, Wang JQ, Lam YW, Pang SW (2015) Control of cell migration direction by inducing cell shape asymmetry with patterned topography. J Biomed Mater Res A 103:2383–2393

  • Thakar RG et al (2009) Cell-shape regulation of smooth muscle cell proliferation. Biophys J 96:3423–3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thery M, Bornens M (2006) Cell shape and cell division. Curr Opin Cell Biol 18:648–657

    Article  CAS  PubMed  Google Scholar 

  • Trzpis M, McLaughlin PM, de Leij LM, Harmsen MC (2007) Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am J Pathol 171:386–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villablanca EJ et al (2006) Control of cell migration in the zebrafish lateral line: implication of the gene “tumour-associated calcium signal transducer”, TACSTD. Dev Dyn 235:1578–1588

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang Y, Yang M, Zhou H (2010) A newly identified epithelial cell adhesion molecule (EpCAM) from grass carp (Ctenopharyngodon idellus): cloning, tissue distribution and lipopolysaccharide-induced expression in head kidney leucocytes. Fish Shellfish Immunol 29:998–1002

    Article  CAS  PubMed  Google Scholar 

  • Went P et al (2006) Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br J Cancer 94:128–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter MJ, Nagelkerken B, Mertens AE, Rees-Bakker HA, Briaire-de Bruijn IH, Litvinov SV (2003) Expression of Ep-CAM shifts the state of cadherin-mediated adhesions from strong to weak. Exp Cell Res 285:50–58

    Article  CAS  PubMed  Google Scholar 

  • Yoon SM, Gerasimidou D, Kuwahara R, Hytiroglou P, Yoo JE, Park YN, Theise ND (2011) Epithelial cell adhesion molecule (EpCAM) marks hepatocytes newly derived from stem/progenitor cells in humans. Hepatology 53:964–973

    Article  PubMed  Google Scholar 

  • Zhong Y, Ji B (2013) Impact of cell shape on cell migration behavior on elastic substrate. Biofabrication 5:015011

    Article  PubMed  Google Scholar 

  • Zuo W, Qian H, Xu Y, Du S, Yang X (1986) A cell line derived from the kidney of grass carp (Ctenopharyngodon idellus). J Fish China 10:11–17

    Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (31101877, 31471181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guo, Y., Wei, H. et al. Regulatory roles of grass carp EpCAM in cell morphology, proliferation and migration. Fish Physiol Biochem 42, 423–430 (2016). https://doi.org/10.1007/s10695-015-0148-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0148-4

Keywords

Navigation