Skip to main content
Log in

Spermatogonial stem cells specific marker identification in channel catfish, Ictalurus punctatus and blue catfish, I. furcatus

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Testicular germ cells of channel catfish, Ictalurus punctatus, and blue catfish, I. furcatus were separated into four layers with Percoll density gradient centrifugation, containing different cell types (40 % in the first layer were spermatogonial stem cells, SSCs). Expression of seventeen genes was analyzed for cells from different layers by real-time quantitative PCR. Pfkfb4, Urod, Plzf, Integrin6, IntegrinV, Thy1 and Cdh1 genes showed the same expression change pattern in both channel and blue catfish as these genes were down-regulated in the spermatocytes and even more so in spermatids. Plzf and Integrin6 had especially high expression in SSCs and can be used as SSCs specific markers. Sox2 gene was up-regulated in spermatocytes and even more highly up-regulated in spermatids, which indicated it could be a spermatid marker. In contrast to channel catfish, Id4Smad5 and Prdm14 gene expressions were strongly down-regulated in spermatocyte cells, but up-regulated in spermatid cells in blue catfish. Smad5 gene was down-regulated in spermatocytes, but up-regulated in both spermatogonia and spermatids, allowing identification as a marker for spermatocytes in blue catfish. Oct4, Id4, Gfrα2, Pum2 and Prdm14 genes showed different expression patterns in the testicular germ cells of channel and blue catfish. This may be a partial explanation to the differing responses of channel catfish and blue catfish to induced spawning technologies. The SSCs specific markers can be used for further SSCs labeling, which can increase the SSCs sorting efficiency and be applied in various studies involving SSCs and other germ cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SSCs:

Spermatogonial stem cells

PGCs:

Primordial germ cells

TL:

Total length

qPCR:

Real-time quantitative PCR

References

  • Avilion AA, Nicolis SK, Pevny LH, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, de Rooij DG, Braun RE (2004) Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36:647–652

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Matzuk MM (2001) Smad5 is required for mouse primordial germ cell development. Mech Dev 104:61–67

    Article  CAS  PubMed  Google Scholar 

  • Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova K, Sukhwani M, Orwig KE, Wolgemuth DJ, Pandolfi PP (2004) Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 36:653–659

    Article  CAS  PubMed  Google Scholar 

  • Dunham RA, Argue BJ (2000) Reproduction among channel catfish, blue catfish, and their F1 and F2 hybrids. Trans Am Fish Soc 129:222–231

    Article  Google Scholar 

  • Dunham RA, Masser M (2012) Production of hybrid catfish. SRAC No. 190, Southeastern Regional Aquaculture Center, Stoneville, Mississippi, USA

  • Fumarola D, Antonaci S, Jirillo E, Munno I, Lucivero G, Bonomo L (1982) Percoll density gradient centrifugation. Res Clin Lab 12:485–491

    CAS  Google Scholar 

  • Hofmann MC, Braydich-Stolle L, Dym M (2005) Isolation of male germ-line stem cells; influence of GDNF. Dev Biol 279:114–124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kokkinaki M, Djourabtchi A, Nady Golestaneh N (2011) Long-term culture of human SSEA-4 positive spermatogonial stem cells (SSCs). J Stem Cell Res Ther 2:2488

    PubMed Central  PubMed  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2003) Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci U S A 100:6487–6492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lacerda SMSN, Batlouni SR, Silva SBG, Homem CSP, França LR (2006) Germ cells transplantation in fish: the Nile-tilapia model. Anim Reprod 3:146–159

    Google Scholar 

  • Lacerda SMSN, Batlouni SR, Costa GM, Segatelli TM, Quirino BR, Queiroz BM, Kalapothakis E, França LR (2010) A new and fast technique to generate offspring after germ cells transplantation in adult fish: the Nile Tilapia (Oreochromis niloticus) model. PLoS One 5:e10740

    Article  PubMed Central  PubMed  Google Scholar 

  • Lacerda SMSN, Aponte PM, Costa GMJ, Campos-Junior PHA, Segatelli TM, Silva MA, França LR (2012) An overview on spermatogonial stem cell physiology, niche and transplantation. Anim Reprod 9:798–808

    Google Scholar 

  • Leal MC, Cardoso ER, Nobrega RH, Batlouni SR, Bogerd J, Franca LR, Schulz RW (2009) Histological and stereological evaluation of zebrafish (Danio rerio) spermatogenesis with an emphasis on spermatogonial generations. Biol Reprod 81:177–187

    Article  CAS  PubMed  Google Scholar 

  • Leong KG, Wang BE, Johnson L, Gao WQ (2008) Generation of a prostate from a single adult stem cell. Nature 45:804–808

    Article  Google Scholar 

  • Li C, Beck HB, Peatman E (2014) Nutritional impacts on gene expression in the surface mucosa of blue catfish (Ictalurus furcatus). Dev Comp Immunol 44:226–234

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{ - \Delta \Delta C_{\text{t}} }}\) method. Methods 25:402–408

  • Meng X, Lindahl M, Hyvönen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola H (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287:1489–1493

    Article  CAS  PubMed  Google Scholar 

  • Moore FL, Jaruzelska J, Fox MS, Urano J, Firpo MT, Turek PJ, Dorfman DM, Pera RA (2003) Human Pumilio-2 is expressed in embryonic stem cells and germ cells and interacts with DAZ (Deleted in AZoospermia) and DAZ-like proteins. Proc Natl Acad Sci U S A 100:538–543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morita T, Kumakura N, Morishima K, Mitsuboshi T, Ishida M, Hara T, Kudo S, Miwa M, Ihara S, Higuchi K, Takeuchi Y, Yoshizaki G (2012) Production of donor-derived offspring by allogeneic transplantation of spermatogonia in the yellowtail (Seriola quinqueradiata). Biol Reprod 86:176

    Article  PubMed  Google Scholar 

  • Nagasawa K, Shikina S, Takeuchi Y, Yoshizaki G (2010) Lymphocyte antigen 75 (Ly75/CD205) is a surface marker on mitotic germ cells in rainbow trout. Biol Reprod 83:597–606

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Muguruma Y, Yahata T, Miyatake H, Sakai D, Mochida J, Hotta T, Ando K (2006) Expression of CD90 on keratinocyte stem/progenitor cells. Br J Dermatol 154:1062–1070

    Article  CAS  PubMed  Google Scholar 

  • Nobrega RH, Greebe CD, van de Kant H, Bogerd J, França LR, Schulz RW (2010) Spermatogonial stem cell niche and spermatogonial stem cell transplantation in zebrafish. PLoS One 5:e12808

    Article  PubMed Central  PubMed  Google Scholar 

  • Oatley MJ, Kaucher AV, Racicot KE, Oatley JM (2011) Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol Reprod 85:347–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohmura M, Yoshida S, Ide Y, Nagamatsu G, Suda T, Ohbo K (2004) Spatial analysis of germline stem cell development in Oct-4/EGFP transgenic mice. Arch Histol Cytol 67:285–296

    Article  CAS  PubMed  Google Scholar 

  • Okutsu T, Suzuki K, Takeuchi Y, Takeuchi T, Yoshizaki G (2006) Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc Natl Acad Sci U S A 103:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ozaki Y, Saito K, Shinya M, Kawasaki T, Sakai N (2011) Evaluation of Sycp3, Plzf and Cyclin B3 expression and suitability as spermatogonia and spermatocyte markers in zebrafish. Gene Expr Patterns 11:309–315

    Article  CAS  PubMed  Google Scholar 

  • Panda RP, Barman HK, Mohapatra C (2011) Isolation of enriched carp spermatogonial stem cells from Labeo rohita testis for in vitro propagation. Theriogenology 76:241–251

    Article  CAS  PubMed  Google Scholar 

  • Perera DA (2012) Studies for improvement of reproductive biotechnology for production of channel catfish (Ictalurus punctatus) female X blue catfish (Ictalurus furcatus) male hybrid embryos. Doctoral dissertation, Auburn University, AL, USA

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sánchez-Sánchez AV, Camp E, García-España A, Leal-Tassias A, Mullor JL (2010) Medaka Oct4 is expressed during early embryo development, and in primordial germ cells and adult gonads. Dev Dynam 239:672–679

    Article  Google Scholar 

  • Shang M (2013) Isolation, identification, culture, cryopreservation, genetic transformation and transplantation of catfish germline stem cells. Doctoral dissertation, Auburn University, AL, USA

  • Shinohara T, Avarbock MR, Brinster RL (1999) β1- and α6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 96:5504–5509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shinohara T, Orwig KE, Avarbock MR, Brinster RL (2000) Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc Natl Acad Sci U S A 97:8346–8351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun F, Liu S, Gao X, Jiang Y, Perera D, Wang X, Li C, Sun L, Zhang J, Kaltenboeck L, Dunham R, Liu Z (2013) Male-biased genes in catfish as revealed by RNA-Seq analysis of the testis transcriptome. PLoS One 8:e68452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tokuda M, Kadokawa Y, Kurahashi H, Marunouchi T (2007) CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes. Biol Reprod 76:130–141

    Article  CAS  PubMed  Google Scholar 

  • Vilela DAR, Silva SGB, Peixoto MTD, Godinho HP, Franca LR (2003) Spermatogenesis in teleost: insights from the Nile tilapia (Oreochromis niloticus) model. Fish Physiol Biochem 28:187–190

    Article  CAS  Google Scholar 

  • Yamaji M, Seki Y, Kurimoto K, Yabuta Y, Yuasa M, Shigeta M, Yamanaka K, Ohinata Y, Saitou M (2008) Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat Genet 40:1016–1022

    Article  CAS  PubMed  Google Scholar 

  • Yano A, von Schalburg K, Cooper G, Koop BF, Yoshizaki G (2009) Identification of a molecular marker for type A spermatogonia by microarray analysis using gonadal cells from pvasa-GFP transgenic rainbow trout (Oncorhynchus mykiss). Mol Reprod Dev 76:246–254

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Takakura A, Ohbo K, Abe K, Wakabayashi J, Yamamoto M, Suda T, Nabeshima Y (2004) Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis. Dev Biol 269:447–458

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa H, Morishima K, Fujimoto T, Saito T, Kobayashi T, Yamaha E, Arai K (2009) Chromosome doubling in early spermatogonia produces diploid spermatozoa in a natural clonal fish. Biol Reprod 80:973–979

    Article  CAS  PubMed  Google Scholar 

  • Yoshizaki G, Tago Y, Takeuchi Y, Sawatari E, Kobayashi T, Takeuchi T (2005) Green fluorescent protein labeling of primordial germ cells using a nontransgenic method and its application for germ cell transplantation in salmonidae. Biol Reprod 73:88–93

    Article  CAS  PubMed  Google Scholar 

  • Yoshizaki G, Ichikawa M, Hayashi M, Iwasaki Y, Miwa M, Shikina S, Okutsu T (2010) Sexual plasticity of ovarian germ cells in rainbow trout. Development 137:1227–1230

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B, Höög C (2000) The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell 5:73–83

    Article  CAS  PubMed  Google Scholar 

  • Zayas J, Spassov DS, Nachtman RG, Jurecic R (2008) Murine hematopoietic stem cells and multipotent progenitors express truncated intracellular form of c-kit receptor. Stem Cells Dev 17:343–353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the USDA-Biotechnology Risk Assessment Program (Grant No. 2009-33522-05774), the Alabama Agricultural Experiment Station (80-009) and the Office of the Vice President for Research, Auburn University (OVPR-AU-IGP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rex A. Dunham.

Additional information

Mei Shang and Baofeng Su are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, M., Su, B., Lipke, E.A. et al. Spermatogonial stem cells specific marker identification in channel catfish, Ictalurus punctatus and blue catfish, I. furcatus . Fish Physiol Biochem 41, 1545–1556 (2015). https://doi.org/10.1007/s10695-015-0106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0106-1

Keywords

Navigation