Advertisement

Fish Physiology and Biochemistry

, Volume 41, Issue 4, pp 1015–1027 | Cite as

Physiological response of alligator gar juveniles (Atractosteus spatula) exposed to sub-lethal doses of pollutants

  • Carlos Aguilera González
  • Julio Cruz
  • Roberto Mendoza AlfaroEmail author
Article

Abstract

Alligator gar populations have declined because of overfishing, habitat loss and pollution. Over time, the exposure to different pollutants have affected these fishes as a consequence of their high trophic level, bottom-dwelling habits and long life span. In order to evaluate the physiological effects of pollutants on alligator gar, juveniles (6, 12 and 24 months) were exposed to sub-lethal doses of diazinon, β-naphthoflavone (BNF) and 17 β-estradiol (E2) by intraperitoneal injection. After 2 days of exposure, liver samples were taken to determine the activities of acetylcholinesterase, butyrylcholinesterase and carboxylesterase; alkaline and acid phosphatases (ALP and ACP); ethoxyresorufin o-deethylase (EROD); glutathione s-transferase (GST); superoxide dismutase (SOD), and vitellogenin (VTG) concentration. Two additional bioassays consisting on the exposure of compounds through water or food were performed and after 4 and 28 days, respectively, biomarkers were determined. All esterases were inhibited in organisms exposed to diazinon as well as in 6-months gar exposed to E2 and BNF. In contrast, ALP activity increased in gar exposed to diazinon and E2, while ACP activity did not show any variations. No EROD activity was registered after exposure to the different pollutants, despite being one of the most sensitive and common detoxification biomarkers used for fishes. GST activity reduction was detected when gar were exposed to E2 and BNF, while SOD activity increased after exposure to diazinon and E2. Finally, VTG levels were higher in animals exposed to E2 compared to other treatments. Overall, these results suggest that alligator gar juveniles have a low biotransformation metabolism and show that they are especially sensitive to those pollutants affecting the nervous system.

Keywords

Alligator gar Biotransformation enzymes Cholinesterases Vitellogenin EDCs 

Notes

Acknowledgments

The authors wish to acknowledge the Programs for the Support of Scientific and Technological Research (CONACYT 105116, PAICYT CN781-11) for financing the Project.

Conflict of interest

We, the authors state that we do not have any conflict of interest to declare.

References

  1. Almeida JR, Oliveira C, Gravato C, Guilhermino L (2010) Linking behavioural alterations with biomarkers responses in the European seabass Dicentrarchus labrax L. exposed to the organophosphate pesticide fenitrothion. Ecotoxicology 19:1369–1381. doi: 10.1007/s10646-010-0523-y PubMedCrossRefGoogle Scholar
  2. Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH (2011) Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics 188:799–808. doi: 10.1534/genetics.111.127324/-/DC1 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bonacci S, Corsi I, Focardi S (2009) Cholinesterases in the Antarctic scallop Adamussium col-becki: characterization and sensitivity to pollutants. Ecotoxicol Environ Saf 72:1481–1488PubMedCrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  5. Carvalho FP, Villeneuve JP, Cattini C, Rendón J, Mota de Oliveira J (2009) Ecological risk assessment of PCBs and other organic contaminant residues in Laguna de Terminos, Mexico. Ecotoxicology 18:403–416. doi: 10.1007/s10646-008-0295-9 PubMedCrossRefGoogle Scholar
  6. Couillard CM, Lebeuf M, Ikonomou MG, Poirier GG, Cretney WJ (2005) Low hepatic ethoxyresorufin-0-deethylase activity correlates with high organochlorine concentrations in atlantic tomcod from the Canadian east coast. Environ Toxicol Chem 24(10):2459–2469PubMedCrossRefGoogle Scholar
  7. Dabrowski K, Moreau R (2005) Biosynthesis of ascorbic acid by extant actinopterygians. J Fish Biol 57(3):733–745Google Scholar
  8. Duong CN, Ra JS, Schlenk D, Kim SD, Choi HK, Kim SD (2010) Sorption of estrogens onto different fractions of sediment and its effect on vitellogenin expression in male japanese medaka. Arch Environ Contam Toxicol 59:147–156. doi: 10.1007/s00244-009-9429-1 PubMedCrossRefGoogle Scholar
  9. El-Saeid MH (2010) Monitoring of pesticide residues in Riyadh cultured farm fish. World Appl Sci J 9:1075–1080Google Scholar
  10. Falconer IR, Chapman HF, Moore MR, Ranmuthugala G (2006) Endocrine-disrupting compounds: a review of their challenge to sustainable and safe water supply and water reuse. Environ Toxicol 21:181–191. doi: 10.1002/tox.20172 PubMedCrossRefGoogle Scholar
  11. Firat O, Cogun HY, Yuzereroglu TA, Gök G, Fırat O, Kargin F, Kotemen Y (2011) A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiol Biochem 37:657–666. doi: 10.1007/s10695-011-9466-3 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Fossi MC, Casini S, Marsili L (2006) Endocrine disruptors in mediterranean top marine predators. Environ Sci Pollut 13(3):204–207. doi: 10.1065/espr2006.01.018 CrossRefGoogle Scholar
  13. Goldstone HM, Stegeman JJ (2006) A revised evolutionary history of the CYP1A subfamily: gene duplication, gene conversion, and positive selection. J Mol Evol 62(6):708–717. doi: 10.1007/s00239-005-0134-z PubMedCrossRefGoogle Scholar
  14. Guilhermino L, Lacerda MN, Nogueira A, Soares AMVM (2000) In vitro and in vivo inhibition of Daphnia magna acetylcholinesterase by surfactant agents: possible implications for contamination biomonitoring. Sci Total Environ 247:137–141PubMedCrossRefGoogle Scholar
  15. Gundersen DT, Miller R, Mischler A, Elpers K, Mims SD, Millar JG, Blazer V (2000) Biomarker response and health of polychlorinated biphenyl- and chlordane-contaminated paddlefish from the Ohio river basin, USA. Environ Toxicol Chem 19(9):2275–2285Google Scholar
  16. Hahn ME, Woodin BR, Stegeman JJ, Tillitt DE (1998) Aryl hydrocarbon receptor function in early vertebrates: inducibility of cytochrome P450 1A in agnathan and elasmobranch fish. Comp Biochem Physiol Part C 120:67–75Google Scholar
  17. Hamilton RL, Moorehouse A, Lear SR, Wong JS, Erickson SK (1999) A rapid calcium precipitation method of recovering large amounts of highly pure hepatocyte rough endoplasmic reticulum. J Lipid Res 40:1140–1147PubMedGoogle Scholar
  18. Hartley WR, Thiyagarajah A, Treinies AM (1996) Liver lesions in the gar fish (Lepisosteidae) as biomarkers of exposure. Mar Environ Res 42(1–4):217–221CrossRefGoogle Scholar
  19. Huang TL, Obih PO, Jaiswal R, Hartley WR, Thiyagarajah A (1997) Evaluation of liver and brain esterases in the spotted gar fish (Lepisosteus oculatus) as biomarkers of effect in the lower Mississippi river basin. Bull Environ Contam Toxicol 58:688–695PubMedCrossRefGoogle Scholar
  20. Jönsson EM, Brandt I, Brunström B (2002) Gill filament-based EROD assay for monitoring waterborne dioxin-like pollutants in fish. Environ Sci Technol 36(15):3340–3344PubMedCrossRefGoogle Scholar
  21. Karimzadeh K, Mostafaei A, Sari AE, Pourkazemi M, Zahmatkesh A (2006) Induction and purification of cytochrome P4501A1 from ß-naphthoflavon-treated beluga, Huso huso. J Appl Ichthyol 22(1):221–225CrossRefGoogle Scholar
  22. Katsu Y, Kohno S, Hyodo S, Ijiri S, Adachi S, Hara A, Guillette LJ, Iguchi T (2008) Molecular cloning, characterization, and evolutionary analysis of estrogen receptors from phylogenetically ancient fish. Endocrinology 149(12):6300–6310PubMedCentralPubMedCrossRefGoogle Scholar
  23. Kennedy CJ (1994) Xenobiotics: designing an in vitro system to study enzymes and metabolism. In: Hochachka, Mommsen (eds) Biochemistry and molecular biology of fishes, vol 3, pp 426–427Google Scholar
  24. Luna R, Watanabe KH, Wilding AJ (2005) Spatial bioaccumulation modeling in a network of bayous. Environ Model Softw 21(12):1674–1683CrossRefGoogle Scholar
  25. Mazorra MT, Rubio JA, Blasco J (2002) Acid and alkaline phosphatase activities in the clam Scrobicularia plana: kinetic characteristics and effects of heavy metals. Comp Biochem Physiol B: Biochem Mol Biol 131(2):241–249CrossRefGoogle Scholar
  26. Mendoza R, Aguilera C, Ferrara A (2008) Gar biology and culture: status and prospects. Aquac Res 39:748–763. doi: 10.1111/j.1365-2109.2008.01927.x CrossRefGoogle Scholar
  27. Mendoza R, Santillán O, Revol A, Aguilera C, Cruz J (2012) Alligator gar (Atractosteus spatula, Lacépède 1803) vitellogenin: purification, characterization and establishment of an enzyme-linked immunosorbent assay. Aquac Res 43:649–661. doi: 10.1111/j.1365-2109.2011.02870.x CrossRefGoogle Scholar
  28. Nunes B (2011) The use of cholinesterases in ecotoxicology. Rev Environ Contam Toxicol 212:29–59PubMedGoogle Scholar
  29. O’Connell MT, Shepherd TD, O’Connell AMU, Myers RA (2007) Long-term declines in two apex predators, bull sharks (Carcharhinus leucas) and alligator gar (Atractosteus spatula), in Lake Pontchartrain, an oligohaline estuary in southeastern Louisiana. Estuaries Coasts 30(4):567–574CrossRefGoogle Scholar
  30. Orlando EF, Binczik GA, Kroll KJ, Guillette LJ (2002) The contaminant—associated stress response and its relationship to plasma stress and sex steroid concentrations in the Florida gar, Lepisosteus platyrhincus. Environ Sci 9(4):329–342Google Scholar
  31. Parente TEM, De-Oliveira ACAX, Beghini DG, Chapeaurouge DA, Perales J, Paumgartten FJR (2009) Lack of constitutive and inducible ethoxyresorufin-O-deethylase activity in the liver of suckermouth armored catfish (Hypostomus affinis and Hypostomus auroguttatus, Loricariidae). Comp Biochem Physiol Part C 150:252–260. doi: 10.1016/j.cbpc.2009.05.006 Google Scholar
  32. Pretto A, Loro VL, Morsch VM, Moraes BS, Menezes C, Clasen B, Hoehne L, Dressler V (2009) Acetylcholinesterase activity, lipid peroxidation, and bioaccumulation in silver catfish (Rhamdia quelen) exposed to cadmium. Arch Environ Contam Toxicol 58(4):1008–1014. doi: 10.1007/s00244-009-9419-3 PubMedCrossRefGoogle Scholar
  33. Rakhodaei M, Alishahi M, Baboli MJ (2012) Determining the lethal concentration of diazion pesticide (LC 96 H) on Barbus grypus. World J Fish Mar Sci 4(4):390–395Google Scholar
  34. Rumbold DG, Lange TR, Axelrad DM, Atkeson TD (2008) Ecological risk of methylmercury in Everglades National Park, Florida, USA. Ecotoxicology 17:632–641. doi: 10.1007/s10646-008-0234-9 PubMedCrossRefGoogle Scholar
  35. Sastry KV, Malik PV (1981) Acute and chronic effects of diazinon on some enzymes in certain tissues of a freshwater teleost fish, Channa punctatus (Bloch). J Environ Biol 2(3):19–28Google Scholar
  36. Sen A, Kirikbakan A (2004) Biochemical characterization and distribution of glutathione s-transferases in leaping mullet (Liza saliens). Biochem (Moscow) 69(9):993–1000CrossRefGoogle Scholar
  37. Silva KTU, Pathiratne A (2008) In vitro and in vivo effects of cadmium on cholinesterases in Nile tilapia fingerlings: implications for biomonitoring aquatic pollution. Ecotoxicology 17:725–731. doi: 10.1007/s10646-008-0221-1 PubMedCrossRefGoogle Scholar
  38. Solé M, Castillo M, Lopez de Alda MJ, Porte C, Barceló D (2000) Estrogenicity determination in carp, Cyprinus carpio: a laboratory and field approach. ANALUSIS 28(9):783–788CrossRefGoogle Scholar
  39. Solé M, Rodríguez S, Papiol V, Maynou F, Cartes JE (2009) Xenobiotic metabolism markers in marine fish with different trophic strategies and their relationship to ecological variables. Comp Biochem Physiol Part C 149:83–89Google Scholar
  40. Thompson HM (1999) Esterases as markers of exposure to organophosphates and carbamates. Ecotoxicology 8:369–384CrossRefGoogle Scholar
  41. Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149PubMedCrossRefGoogle Scholar
  42. Velisek J, Svobodova Z, Piackova V (2009) Effects of acute exposure to bifenthrin on some haematological, biochemical and histopathological parameters of rainbow trout (Oncorhynchus mykiss). Vet Med 54(3):131–137Google Scholar
  43. Wilce MCJ, Parker MW (1994) Structure and function of glutathione-s-transferases. Biochem Biophys Acta 1205:1–18PubMedGoogle Scholar
  44. Xu W, Liu W, Lu K, Jiang Y, Li G (2012) Effect of trichlorfon on oxidative stress and hepatocyte apoptosis of Carassius auratus gibelio in vivo. Fish Physiol Biochem 38(3):769–775. doi: 10.1007/s10695-011-9559-z PubMedCrossRefGoogle Scholar
  45. Yousef MI (2004) Aluminum-induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid. Toxicology 199(1):47–57PubMedCrossRefGoogle Scholar
  46. Zala SM, Penn DJ (2004) Abnormal behaviors induced by chemical pollution: a review of the evidence and new challenges. Anim Behav 68:649–664. doi: 10.1016/j.anbehav.2004.01.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Carlos Aguilera González
    • 1
  • Julio Cruz
    • 2
  • Roberto Mendoza Alfaro
    • 1
    Email author
  1. 1.Laboratorio de Ecofisiología, Departamento de Ecología, Facultad de Ciencias BiológicasUniversidad Autónoma de Nuevo León (UANL)San Nicolás de los GarzaMexico
  2. 2.Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma de Nuevo León (UANL)EscobedoMexico

Personalised recommendations