Fish Physiology and Biochemistry

, Volume 41, Issue 2, pp 323–330 | Cite as

Commercial formulation containing 2,4-D affects biochemical parameters and morphological indices of silver catfish exposed for 90 days

  • Charlene Menezes
  • Milene B. Fonseca
  • Jossiele Leitemperger
  • Alexandra Pretto
  • Bibiana S. Moraes
  • Camila R. Murussi
  • Bernardo Baldisserotto
  • Vania L. Loro
Article

Abstract

The objective of this study was to verify whether a commercial formulation of 2,4 dichlorophenoxyacetic acid [2,4-D dimethylamine salt (DMA)] affects the growth and biochemical parameters of silver catfish (Rhamdia quelen) after 90 days of exposure. The fish exposed to 0.5 or 2.0 mg/L of DMA presented exhibited decreased growth parameters. Glucose was reduced in the mucus layer at both concentrations, and the total protein level was increased at the highest concentration tested. Fish exposed to DMA showed reduced liver and kidney glycogen at both concentrations tested, while in the muscle, glycogen was reduced only at 2.0 mg/L. Glucose was increased in the liver and decreased in the muscle and kidney at both concentrations and was not altered in the plasma. Lactate was increased in all the tissues and decreased in the plasma. Protein levels were reduced in the liver and plasma at both concentrations, while in the muscle, it was decreased at a concentration of 2.0 mg/L. Levels of thiobarbituric acid-reactive substances were reduced in the liver and increased in the muscle at both concentrations and did not change in the brain. DMA increased catalase activity in the liver at both concentrations tested. The present study demonstrates the effects of long-term exposure to DMA. Some parameters could be used as toxicity indicators to identify the presence of DMA in an aquatic environment.

Keywords

Catalase DMA Metabolic parameters Silver catfish TBARS 

References

  1. Ahmad I, Pacheco M, Santos MA (2006) Anguilla anguilla L. oxidative stress biomarkers: an in situ study of freshwater wetland ecosystem (Pateira de Fermentelos, Portugal). Chemosphere 65:952–962CrossRefPubMedGoogle Scholar
  2. Ateeq B, Farah MA, Ahmad W (2005) Detection of DNA damage by alkaline single cell gel electrophoresis in 2,4-dichlorophenoxyacetic-acid-and butachlor-exposed erythrocytes of Clarias batrachus. Ecotoxicol Environ Saf 62:348–354CrossRefPubMedGoogle Scholar
  3. Barnham C, Baxter A (1998) Condition factor, K, for salmonid fish. Fisheries notes. FN0005, ISSN 1440-2254Google Scholar
  4. Begum G (2004) Carbofuran insecticide induced biochemical alterations in liver and muscle tissues of the fish Clarias batrachus (Linn) and recovery response. Aquat Toxicol 66:83–92CrossRefPubMedGoogle Scholar
  5. Benli AÇK, Sarikaya R, Sepici-Dincel A, Selvi M, Sahin D, Erkoç F (2007) Investigation of acute toxicity of (2,4-dichlorophenoxy) acetic acid (2,4-D) herbicide on crayfish (Astacus leptodactylus Esch. 1823). Pestic Biochem Physiol 88:296–299CrossRefGoogle Scholar
  6. Bidinotto PM, Souza RHS, Moraes G (1997) Hepatic glycogen and glucose in eight tropical freshwater teleost fish: a procedure for field determinations of micro samples. Bol Tec CEPTA Pirassununga 10:53–60Google Scholar
  7. Cattaneo R, Loro VL, Spanevello R, Silveira FA, Luz L, Miron DS, Fonseca MB, Moraes BS, Clasen B (2008) Metabolic and histological parameters of silver catfish (Rhamdia quelen) exposed to commercial formulation of 2,4-Dichlorophenoxiacetic acid (2,4-D) herbicide. Pestic Biochem Physiol 92:133–137CrossRefGoogle Scholar
  8. Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419CrossRefPubMedCentralPubMedGoogle Scholar
  9. Duboie MG, Gilles KA, Hamilton JK, Roberts PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–358CrossRefGoogle Scholar
  10. Elia AC, Prearo M, Pacini N, Dörr AJM, Abete MC (2011) Effects of selenium diets on growth, accumulation and antioxidant response in juvenile carp. Ecotoxicol Environ Saf 74:166–173CrossRefPubMedGoogle Scholar
  11. Fatima M, Mandiki SNM, Douxfils J, Silvestre S, Coppe P, Kestemont P (2007) Combined effects of herbicides on biomarkers reflecting immune-endocrine interactions in goldfish immune and antioxidants effects. Aquat Toxicol 81:159–167CrossRefPubMedGoogle Scholar
  12. Fonseca MB, Glusczak L, Moraes BS, Menezes CC, Pretto A, Tierno MA, Zanella R, Gonçalves FF, Loro VL (2008) The 2,4-D herbicide effects on acetylcholinesterase activity and metabolic parameters of piava freshwater fish (Leporinus obtusidens). Ecotoxicol Environ Saf 69:416–420CrossRefPubMedGoogle Scholar
  13. Glusczak L, Miron SD, Crestani M, Fonseca BM, Pedron AF, Duarte FM, Vieira PLV (2006) Effect of glyphosate herbicide on acetylcholinesterase activity, metabolic and hematological parameters in piava (Leporinus obtusidens). Ecotoxicol Environ Saf 65:237–241CrossRefPubMedGoogle Scholar
  14. Glusczak L, Loro VL, Pretto A, Moraes BS, Raabe A, Duarte MF, Fonseca MB, Menezes CC, Valladão DMS (2011) Acute exposure to glyphosate herbicide affects oxidative parametrs in piava (Leporinus obtusidens). Arch Environ Contam Toxicol 61:624–630CrossRefPubMedGoogle Scholar
  15. Harrower JR, Brown CH (1972) Blood lactic acid. A micromethod adapted to field collection of microliter samples. J Appl Physiol 32:709–711PubMedGoogle Scholar
  16. Lowry DH, Rosenbrough NJ, Far AL, Randal RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  17. Menezes CC, Loro VL, Fonseca MB, Cattaneo R, Pretto A, Miron DS, Santi A (2011) Oxidative parameters of Rhamdia quelen in response to commercial herbicide containing clomazone and recovery pattern. Pestic Biochem Physiol 100:145–150CrossRefGoogle Scholar
  18. Modesto KA, Martinez CBR (2010) Effects of Roundup transorb on fish: hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere 81:781–787CrossRefPubMedGoogle Scholar
  19. Monteiro DA, Almeida JA, Rantin FT, Kalinin AL (2006) Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comp Biochem Physiol C 143:141–149CrossRefGoogle Scholar
  20. Moraes BS, Loro VL, Glusczak L, Pretto A, Menezes CC, Marchezan E, Machado SO (2007) Effects of four rice herbicides on some metabolic and toxicology parameters of teleost fish (Leporinus obtusidens). Chemosphere 68:1597–1601CrossRefPubMedGoogle Scholar
  21. Moraes BS, Clasen B, Loro VL, Pretto A, Toni C, Avila LA, Marchesan E, Machado SLO, Zanella R, Reimche GB (2011) Toxicological responses of Cyprinus carpio after exposure to a commercial herbicide containing imazethapyr and imazapic. Ecotoxicol Environ Saf 74:328–335CrossRefPubMedGoogle Scholar
  22. Nelson DP, Kiesov LA (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25°C (with molar extinction coefficients of H2O2 solution in the UV). Anal Biochem 49:474–478CrossRefPubMedGoogle Scholar
  23. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefPubMedGoogle Scholar
  24. Ortiz-Ordonez E, Uria-Galicia E, Ruiz-Picos RA, Duran AG, Trejo YH, Sedeno-Diaz JE, López-López E (2011) Effect of Yerbimat herbicide on lipid peroxidation, catalase activity, and histological damage in gills and liver of the freshwater fish Goodea Atripinnis. Arch Environ Contam Toxicol 61:443–452CrossRefPubMedGoogle Scholar
  25. Oruç EÖ, Üner N (1999) Effects of 2,4-Diamin on some parameters of protein and carbohydrate metabolisms in the serum, muscle and liver of Cyprinus carpio. Environ Pollut 105:267–272CrossRefGoogle Scholar
  26. Oruç E, Sevgiler Y, Üner N (2004) Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl. Comp Biochem Physiol C 137:43–51CrossRefGoogle Scholar
  27. Park JT, Johnson MJ (1949) A submicro determination of glucose. J Biol Chem 181:149–151PubMedGoogle Scholar
  28. Parvez S, Raisuddin S (2005) Protein carbonyls: novel biomarkers of exposure to oxidative stress-inducing pesticides in freshwater fish Channa punctata (Bloch). Environ Toxicol Pharmacol 20:112–117CrossRefPubMedGoogle Scholar
  29. Pretto A, Loro VL, Menezes C, Moraes BS, Reimche G, Zanella R, Avila LA (2011) Commercial formulating containing quinclorac and metsulfuron-methyl herbicides inhibit acetylcholinesterase and induce biochemical alterations in tissues of Leporinus obtusidens. Ecotoxicol Environ Saf 74:336–341CrossRefPubMedGoogle Scholar
  30. Rodrigues BN, Almeida FS (2005) Guia de Herbicidas. 5ª edn. Grafmarke, Londrina, p 592Google Scholar
  31. Sabóia-Moraes SMT, Hernandez-Blazquez FJ, Mota DL, Bittencourt AM (1996) Mucous cell types in the branchial epithelium of the euryhaline fish Poecilia vivipara. J Fish Biol 49:545–548CrossRefGoogle Scholar
  32. Salbego J, Pretto A, Gioda CR, Menezes CC, Lazzari R, Neto JR, Baldisserotto B, Loro VL (2010) Herbicide formulation with glyphosate affects growth, acetylcholinesterase activity, and metabolic and hematological parameters in piava (Leporinus obtusidens). Arch Environ Contam Toxicol 58:740–745CrossRefPubMedGoogle Scholar
  33. Sensem SA (2007) Herbicide Handbook. 9ªth edn. Weed Science Society of America, Lawrence, pp 322–328Google Scholar
  34. Sevgiler Y, Oruç EO, Üner N (2004) Evaluation of etoxazole toxicity in the liver of Oreochromis niloticus. Pestic Biochem Physiol 78:1–8CrossRefGoogle Scholar
  35. Sevgiler Y, Piner P, Durmaz H, Üner N (2007) Effects of N-acetylcysteine on oxidative responses in the liver of fenthion exposed Cyprinus carpio. Pestic Biochem Physiol 87:248–254CrossRefGoogle Scholar
  36. Shiogiri NS, Paulino MG, Carraschi SP, Baraldi FG, Cruz C, Fernandes MN (2012) Acute exposure of a glyphosate-based herbicide affects the gills and liver of the neotropical fish, Piaractus mesopotamicus. Environ Toxicol Pharmacol 34:388–396CrossRefPubMedGoogle Scholar
  37. Soso AB, Barcellos LJG, Ranzani-Paiva MJ, Kreutz LC, Quevedo RM, Anziliero D, Lima M, Silva LB, Ritter F, Bedin AC, Finco JA (2007) Chronic exposure to sub-lethal concentration of glyphosate-based herbicide alters hormone profiles and effects reproduction of female jundiá (Rhamdia quelen). Environ Toxicol Pharmacol 23:308–313CrossRefPubMedGoogle Scholar
  38. Tromeur F, Guerard F, Gal YL (1992) Mucous glycoprotein from the ray Raja batis. Comp Biochem Physiol 102:773–778Google Scholar
  39. Üner N, Oruç EO, Sevgiler E, Sahin N, Durmaz H, Usta D (2005) Effects of diazinon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus. Environ Toxicol Pharmacol 21:242–245Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Charlene Menezes
    • 1
    • 3
    • 4
  • Milene B. Fonseca
    • 2
    • 3
  • Jossiele Leitemperger
    • 2
    • 3
  • Alexandra Pretto
    • 2
    • 3
  • Bibiana S. Moraes
    • 2
    • 3
  • Camila R. Murussi
    • 2
    • 3
  • Bernardo Baldisserotto
    • 2
  • Vania L. Loro
    • 1
    • 2
    • 3
  1. 1.Programa de Pós-Graduação em Biodiversidade AnimalUniversidade Federal de Santa Maria – UFSMSanta MariaBrazil
  2. 2.Programa de Pós-Graduação em Bioquímica ToxicológicaUniversidade Federal de Santa Maria – UFSMSanta MariaBrazil
  3. 3.Laboratório de Bioquímica AdaptativaUniversidade Federal de Santa Maria – UFSMSanta MariaBrazil
  4. 4.Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations