Skip to main content
Log in

Hematological changes and cytogenotoxicity in the tilapia Oreochromis niloticus caused by sub-chronic exposures to mercury and selenium

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Fish bioassays are valuable tools that can be used to elucidate the toxicological potential of numerous substances that are present in the aquatic environment. In this study, we assessed the antagonistic action of selenium (Se) against the toxicity of mercury (Hg) in fish (Oreochromis niloticus). Six experimental groups with six fish each were defined as follows: (1) control, (2) mercury (HgCl2), (3) sodium selenite (Na2Se4O3), (4) sodium selenate (Na2Se6O4), (5) mercury + sodium selenite (HgCl2 + Na2Se4O3), and (6) mercury + sodium selenate (HgCl2 + Na2Se6O4). Hematological parameters [red blood cells (RBC), white blood cells (WBC), and erythroblasts (ERB)] in combination with cytogenotoxicity biomarkers [nuclear abnormalities (NAs) and micronuclei (MN)] were examined after three, seven, ten, and fourteen days. After 7 days of exposure, cytogenotoxic effects and increased erythroblasts caused by mercury, leukocytosis triggered by mercury + sodium selenite, leukopenia associated with sodium selenate, and anemia triggered by mercury + sodium selenate were observed. Positive correlations that were independent of time were observed between WBC and RBC, ERB and MN, and NA and MN. The results suggest that short-term exposure to chemical contaminants elicited changes in blood parameters and produced cytogenotoxic effects. Moreover, NAs are the primary manifestations of MN formation and should be included in a class characterized as NA only. Lastly, the staining techniques used can be applied to both hematological characterization and the measurement of cytogenotoxicity biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Sabti K, Metcalfe CD (1995) Fish micronuclei for assessing genotoxicity in water. Mutat Res 343:121–135

    Article  CAS  PubMed  Google Scholar 

  • APHA-American Public Health Association; AWWA American Water Works Association; WPCF-Water Pollution Control Federation(2005) Standard methods for the examination of water and wastewater 21st edn. Washington, D.C

  • Ayllon F, Garcia-Vazquez E (2000) Induction of micronuclei and other nuclear abnormalities in European minnow Phoxinus phoxinus and mollie Poecilia latipinna: an assessment of the fish micronucleus test. Mutat Res 467:177–186

    Article  CAS  PubMed  Google Scholar 

  • Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Rev Fish Dis 1:3–26

    Article  Google Scholar 

  • Barton BA, Ribas L, Acerete L, Tort L (2005) Effects of chronic confinement on physiological responses of the juvenile gilthead sea bream, Sparus aurata L. to acute handling. Aquac Res 36:172–179

    Article  Google Scholar 

  • Bébien M, Lagniel G, Garin J, Touati D, Verméglio A, Labarre J (2002) Involvement of superoxide dismutases in the response of Escherichia coli to selenium oxides. J Bacteriol 184:1556–1564

    Article  PubMed Central  PubMed  Google Scholar 

  • Belzile N, Chen YW, Gunn JM, Tong J, Alarie Y, Delonchamp T, Lang CY (2006) The effect of selenium on mercury assimilation by freshwater organisms. Can J Fish Aquat Sci 63(1):1–10

    Article  CAS  Google Scholar 

  • Birungi Z, Masola B, Zaranyika MF, Naigaga I, Marshall B (2007) Active biomonitoring of trace heavy metals using fish (Oreochromis niloticus) as bioindicator species. The case of Nakivubo wetland along Lake Victoria. Phys Chem Earth Parts A/B/C 32:1350–1358

    Article  Google Scholar 

  • Bolognesi C, Perrone E, Roggieri P, Pampanin DM, Sciutto A (2006) Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions. Aquat Toxicol 78:S93–S98

    Article  CAS  PubMed  Google Scholar 

  • Bower CE, Bidwell JP (1978) Ionization of ammonia in seawater: effects of temperature, pH, and salinity. J Fish Res Board Can 35:1012–1016

    Article  CAS  Google Scholar 

  • Bucker A, Carvalho M, Conceição M, Alves-Gomes J (2012) Micronucleus test and comet assay in erythrocytes of the Amazonian electric fish Apteronotus bonapartii exposed to benzene. Ecotoxicol Environ Contam 7(1)

  • Buthelezi PP, Wepener V, Cyrus DP (2000) The sublethal effects of zinc at different water temperatures on selected haematological variables in Oreochromis mossambicus. Afr J Aquat Sci 25:146–151

    Article  CAS  Google Scholar 

  • Carrasco KR, Tibury KL, Myers MS (1990) Assessment of the piscine micronucleus test as an in situ biological indicator of chemical contaminant effects. Can J Fish Aquat Sci 47(11):2123–2136

    Article  CAS  Google Scholar 

  • Çelik ES, Kaya HL, Yilmaz S, Akbulut M, Tulgar A (2013) Effects of zinc exposure on the accumulation, haematology and immunology of Mozambique tilapia, Oreochromis mossambicus. Afr J Biotechnol 12:744–753

    Google Scholar 

  • Cogun HY, Fırat O, Fırat O, Yüzereroğlu TA, Gök G, Kargin F, Kötemen Y (2012) Protective effect of selenium against mercury-induced toxicity on hematological and biochemical parameters of Oreochromis niloticus. J Biochem Mol Toxicol 26:117–122

    Article  CAS  PubMed  Google Scholar 

  • Dias DC, Tachibana L, Seriani R, Santos AA, Ranzani-Paiva MJT, Romagosa E (2011) Tempo de migração dos macrófagos em matrinxã, Brycon amazonicus por meio da técnica de inoculação de leveduras Saccharomyces cerevisiae. Acta Amazon 41:421–424

    Article  Google Scholar 

  • Diniz NM, Honorato CA (2012) Algumas alternativas para diminuir os efeitos do estresse em peixes de cultivo-revisão. Arq Ciênc Vet Zool UNIPAR, Umuarama 15:149–154

    Google Scholar 

  • Fast MD, Hosoya S, Johnson SC, Afonso LO (2008) Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish Shellfish Immunol 24:194–204

    Article  CAS  PubMed  Google Scholar 

  • França JG, Ranzani-Paiva MJT, Lombardi JV, Carvalho S, Seriani R (2007) Toxicidade crônica do cloreto de mercúrio (HgCl2) associado ao selênio, por meio do estudo hematológico em tilápia Oreochromis niloticus. Bioikos 21:11–19

    Google Scholar 

  • França JG, Ranzani-Paiva MJT, Lombardi JV, Carvalho S, Filipak-Neto F, Oliveira-Ribeiro CA (2013) Toxic effect of potassium permanganate on Oreochromis niloticus based on hematological parameters and biomarkers of oxidative stress. Int J Fish Aquacult 5(1):1–6

    Google Scholar 

  • Gökalp-Muranli FD, Güner U (2011) Induction of micronuclei and nuclear abnormalities in erythrocytes of mosquito fish (Gambusia affinis) following exposure to the pyrethroid insecticide lambda-cyhalothrin. Mutat Res 726:104–108

    Article  PubMed  Google Scholar 

  • Gravato C, Santos MA (2002) Juvenile sea bass liver biotransformation induction and erythrocytic genotoxic responses to pulp mill contaminants. Ecotoxicol Environ Saf 53:104–112

    Article  CAS  PubMed  Google Scholar 

  • Guilherme S, Válega M, Pereira ME, Santos MA, Pacheco M (2008) Erythrocytic nuclear abnormalities in wild and caged fish (Liza aurata) along an environmental mercury contamination gradient. Ecotoxicol Environ Saf 70:411–421

    Article  CAS  PubMed  Google Scholar 

  • Gupta K, Sachar A, Sheetu R (2013) Haematological response of freshwater fish Puntius sophore (HAM.) to copper exposure. Int J Sci Res Pub 3:1–6

    Google Scholar 

  • Hontela A, Rasmussen JB, Audet C, Chevalier G (1992) Impaired cortisol stress response in fish from environments polluted by PAHs, PCBs, and mercury. Arch Environ Contam Toxicol 22:278–283

    Article  CAS  PubMed  Google Scholar 

  • Hrubec TC, Smith SA (1998) Hematology of fish. In: Feldman BF, Zinkl JG, Jain NC (eds) Schalm’s Veterinary Hematology, 5th edn. W.W. Lippincott, Sydney, pp 1120–1125

  • Huber R, Streng S, Bauchinger M (1983) The suitability of the human lymphocyte micronucleus assay system for biological dosimetry. Mutat Res 111:185–193

    Article  CAS  PubMed  Google Scholar 

  • Hymavathi V, Rao LM (2000) Effect of sublethal concentration of lead on the haematology and the biochemical constituence of Channa punctata. Bull Pure Appl Sci 19:1–5

    Google Scholar 

  • Ishikawa NM, Ranzani-Paiva MJT, Lombardi JV, Ferreira CM (2007) Hematological challenge with tilapia, Oreochromis niloticus exposed to sub-lethal mercury concentrations. Braz Arch Biol Technol 50:619–626

    Article  CAS  Google Scholar 

  • Javed M, Usmani N (2012) Toxic effects of heavy metals (Cu, Ni, Fe Co, Mn, Cr, Zn) to the haematology of Mastacembelus armatus thriving in Harduaganj Reservoir, Aligarh, India. J Global Med Res 12:59–64

    Google Scholar 

  • John PJ (2007) Alteration of certain blood parameters of freshwater teleost Mystus vittatus after chronic exposure to Metasystox and Sevin. Fish Physiol Biochem 33:15–20

    Article  CAS  Google Scholar 

  • Joshi PK, Bose M, Harish D (2002) Haematological changes in the blood of Clarias batrachus exposed to mercuric chloride. J Ecotoxicol Environ Monit 12:119–122

    CAS  Google Scholar 

  • Kirschbaum AA, Seriani R, Pereira CD, Assunção A, Abessa DMS, Rotundo MM, Ranzani-Paiva MJT (2009) Cyto-genotoxicity biomarkers in fat sook Centropomus parallelus from Cananeia and São Vicente estuaries, SP, Brazil. Genet Mol Biol 32:151–154

    Article  PubMed Central  PubMed  Google Scholar 

  • Kurteshi K, Letaj K (2013) Assessment of the piscine micronucleus test as an in situ biological indicator of fungicide contaminant effects. J Chem Biol Phys Sci 3:1263–1267

    CAS  Google Scholar 

  • Llorente MT, Martos A, Castaño A (2002) Detection of cytogenetic alterations and blood cell changes in natural populations of carp. Ecotoxicology 11(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Lohner TW, Reash RJ, Willet VE, Rose LA (2001) Assessment of tolerant sunfish populations (Lepomis sp.) inhabiting selenium-laden coal ash effluents. 1. Hematological and population level assessment. Ecotoxicol Environ Safe 50:203–216

    Article  CAS  Google Scholar 

  • Macfarlane RD, Bullock GL, Mclaughlin JJ (1986) Effects of five metals on susceptibility of striped bass to Flexibacter columnaris. Trans Am Fish Soc 115:227–231

    Article  CAS  Google Scholar 

  • Maria VL, Gravato C, Correia AC, Santos MA (2002) Biotransformation and genotoxicity responses to PAHs in two teleost species. Fresenius Environ Bull 11:609–615

    CAS  Google Scholar 

  • Matsumoto FE, Cólus IMS (2000) Micronucleus frequencies in Astyanax bimaculatus (Characidae) treated with cyclophosphamide or vinblastine sulfate. Genet Mol Biol 23(2):489–492

    Article  CAS  Google Scholar 

  • Mazon AF, Monteiro EAS, Pinheiro GHD, Fernandes MN (2002) Hematological and physiological changes induced by short-term exposure to copper in the freshwater fish, Prochilodus scrofa. Braz J Biol 62:621–631

    Article  CAS  PubMed  Google Scholar 

  • Miller LL, Wang F, Palace VP, Hontela A (2007) Effects of acute and subchronic exposures to waterborne selenite on the physiological stress response and oxidative stress indicators in juvenile rainbow trout. Aquat Toxicol 83:263–271

    Article  CAS  PubMed  Google Scholar 

  • Moharram SG, Wahbi OM, El-Greisy ZA (2011) Effect of polluted water from the Egyptian Eastern Mediterranean Coast on reproductive, toxicological, and hematological characteristics of Siganus rivulatus. Pak J Biol Sci 14:668–681

    Article  CAS  PubMed  Google Scholar 

  • Monteiro DA, Rantin FT, Kalinin AL (2010) Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxã, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology 19:105–123

    Article  CAS  PubMed  Google Scholar 

  • Nussey G, van Vuren JHJ, du Preez HH (2002) The effect of copper and zinc at neutral and acidic pH on the general haematology and osmoregulation of Oreochromis mossambicus. Afr J Aquat Sci 27:61–84

    Article  CAS  Google Scholar 

  • Oliveira-Junior AA, Tavares-Dias MT, Marcom JL (2009) Biochemical and hematological reference ranges for Amazon freshwater turtle, Podocnemis expansa (Reptilia: Pelomedusidae), with morphologic assessment of blood cells. 146–151

  • Oliveira-Ribeiro CA, Pelletier E, Pfeiffer WC, Rouleau C (2000) Comparative uptake, bioaccumulation, and gill damages of inorganic mercury in tropical and Nordic freshwater fish. Environ Res 83:286–292

    Article  CAS  PubMed  Google Scholar 

  • Osman AG, Abuel-Fadl KY, Kloas W (2012) In situ evaluation of the genotoxic potential of the river Nile: II. Detection of DNA strand-breakage and apoptosis in Oreochromis niloticus (Linnaeus, 1758) and Clarias gariepinus (Burchell, 1822). Mutat Res 747:14–21

    Article  CAS  PubMed  Google Scholar 

  • Pacheco M, Santos MA (1998) Induction of liver EROD and erythrocytic nuclear abnormalities by cyclophosphamide and PAHs in Anguilla anguilla L. Ecotoxicol Environ Safe 40:71–76

    Article  CAS  Google Scholar 

  • Peakall D, Burger J (2003) Methodologies for assessing exposure to metals: speciation, bioavailability of metals, and ecological host factors. Ecotoxicol Environ Safe 56:110–121

    Article  CAS  Google Scholar 

  • Prado LRGB, Felix C, Abessa DMS, Buruaem LM, Abujamara LD, Kirschbaum AA, Turatti GCR, Ranzani-Paiva MJT, Correia AT, Seriani R (2014) Hematological parameters and nuclear abnormalities in peripheral erythrocytes ofAchirus lineatus (Pleuronectiformes: Achiridae) Comp Clin Pathol

  • Rajkumar JSI, Tennyson S (2013) Mercury induced biochemical alterations as oxidative stress in Mugil cephalus in short term toxicity test. Curr World Environ 8:55–59

    Article  CAS  Google Scholar 

  • Ranzani-Paiva MJT, Lombardi JV, Gonçalves A (2011) Acute toxicity of sodium selenite and sodium selenate to tilapia, Oreochromis niloticus Fingerlings. Bol Inst Pesca 37:191–197

    Google Scholar 

  • Rosenfeld G (1947) Corante pancrômico para hematologia e citologia clínica: nova combinação dos componentes do May-Grünwald e do Giemsa num só corante de emprego rápido. Mem Inst Butantan 20:29–34

    Google Scholar 

  • Seriani R, Abessa DMS, Kirschbaum AA, Pereira CDS, Romano P, Ranzani-Paiva MJT (2011a) Relationship between water toxicity and hematological changes in Oreochromis niloticus. Braz J Aquat Sci Technol 15:47–53

    Google Scholar 

  • Seriani R, Ranzani-Paiva MJT, Silva-Souza ÂT, Napoleão SR (2011b) Hematology, micronuclei and nuclear abnormalities in fishes from São Francisco river, Minas Gerais state, Brazil. Acta Scientiarum Biol Sci 33(1):107–112. doi:10.4025/actascibiolsci.v33i1.7117

    Google Scholar 

  • Seriani R, Goncalves A, Ranzani-Paiva MJT, Siqueira SR, Lombardi JV (2012) Determination of selenium toxicity to Oreochromis niloticus based on hematological parameters. Acta Sci-Biol Sci 34:125–131

    Article  CAS  Google Scholar 

  • Seriani R, Abessa DMS, Pereira CDS, Kirschbaum AA, Abujamara LD, Buruaem LM, Félix C, Turatti LRGB, Sousa ECPM (2013a) Ranzani-Paiva, MJT, Blood parameters of estuarine and marine fish as non-destructive pollution biomarkers. IN Pollution and Fish Health in Tropical Ecosystems, Editor(s): Eduardo Alves de Almeida, Ciro Alberto de Oliveira Ribeiro, pp 182–204

  • Seriani R, Abessa DMS, Pereira CDS, Kirschbaum AA, Assunção A, Ranzani-Paiva MJT (2013b) Influence of seasonality and pollution on the hematological parameters of the estuarine fish Centropomus parallelus. Braz J Oceanogr 61:105–111

    Article  Google Scholar 

  • Spallholz J, Hoffman D (2002) Selenium toxicity: cause and effects in aquatic birds. Aquat Toxicol 57:27–37

    Article  CAS  PubMed  Google Scholar 

  • Sumpter JP (1997) The endocrinology of stress. In: Iwama GK, Pickering AD, Sumpter JP, Schreck CB, editors. Fish stress and health in aquaculture, pp 277

  • Svobodova Z, Vykusova B, Machova J (1994) Sublethal chronic effects of pollutants on freshwater fish. In: Muller R, Lloyd R, editors. Lugano, pp 39–52

  • Swee JT, Xin D, Foo-Ching T, Silas OH (2002) Selenium-induced teratogenicity in Sacramento splittail (Pogonichthys macrolepidotus). Mar Environ Res 54:605–608

    Article  Google Scholar 

  • Titenko-Holland N, Windham G, Kolachana P, Reinisch F, Parvatham S, Osorio AM, Smith MT (1997) Genotoxicity of malathion inhuman lymphocytes assessed using the micronucleus assay in vitroand in vivo: a study of malathion-exposed workers. Mutat Res 388:85–95

    Article  CAS  PubMed  Google Scholar 

  • Vethaak AD, Bucke D, Lang T, Wester PW, Jol J, Carr M (1992) Fish disease monitoring along a pollution transect: a case study using dab L~manda handa in the German Blght lvlar. Ecol Prog Ser 91:173–192

    Article  Google Scholar 

Download references

Conflict of Interest

The authors of this manuscript do not have a direct or indirect financial relationship with any commercial company mentioned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robson Seriani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seriani, R., França, J.G., Lombardi, J.V. et al. Hematological changes and cytogenotoxicity in the tilapia Oreochromis niloticus caused by sub-chronic exposures to mercury and selenium. Fish Physiol Biochem 41, 311–322 (2015). https://doi.org/10.1007/s10695-014-9984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-014-9984-x

Keywords

Navigation