Fish Physiology and Biochemistry

, Volume 40, Issue 6, pp 1899–1906 | Cite as

Spectral sensitivity of the electroretinogram b-wave in dark-adapted Prussian carp (Carassius gibelio Bloch, 1782)

  • Z. Gačić
  • A. Bajić
  • M. Milošević
  • M. Nikčević
  • B. Mićković
  • A. Hegediš
  • L. Gačić
  • I. Damjanović
Article

Abstract

One of the purposes of this study was to examine whether b-wave measurements can be used in the evaluation of scotopic spectral sensitivity in Prussian carp measurements when the eyes were surgically deprived of cornea, lens, and most of the vitreous. Another goal was testing the new fitting procedure for A2-based photopigments. Using fitted amplitude-log intensity functions for threshold calculation, and two models for computer-assisted fitting of spectral sensitivity curves, no significant differences in λmax were found between rod photopigments and b-wave-based spectral sensitivity.

Keywords

Prussian carp Spectral sensitivity b-Wave 

References

  1. Andjus PR, Dj Konjević, Andjus RK (1983) The electroretinogram of the dogfish shark: isolation of the late receptor component after low temperature aging of the eyecup preparation. Period Biol 85:181–183Google Scholar
  2. Andjus RK, Damjanović I, Gačić Z, Konjević Dj, Andjus PR (1998) Electroretinographic evaluation of spectral sensitivity in yellow and silver eels (Anguilla anguilla). Vis Neurosci 15:923–930Google Scholar
  3. Bowmaker J (1973) The photoproducts of retinal-based visual pigments in situ: a contrast between Rana pipiens and Gekko gecko. Vision Res 13:1227–1240PubMedCrossRefGoogle Scholar
  4. Bridges CDB (1967) Photopigments in the char of Lake Windermere (Salvelinus willughbii, forma autumnalis and forma vernalis). Nature 214:205–206PubMedCrossRefGoogle Scholar
  5. Burkhardt A (1966) The goldfish electroretinogram: relation between photopic spectral sensitivity functions and cone absorption spectra. Vision Res 6:517–532PubMedCrossRefGoogle Scholar
  6. Dartnall HJA (1953) The interpretation of spectral sensitivity curves. Br Med Bull 9:24–30PubMedGoogle Scholar
  7. Easter SS, Hamasaki DI (1973) Electroretinographically-determined scotopic spectral sensitivities of some marine fish. Vision Res 13:1175–1181PubMedCrossRefGoogle Scholar
  8. Gačić Z, Damjanović I, Mićković B, Hegediš A, Nikčević M (2007a) Spectral sensitivity of the dogfish shark (Scyliorhinus canicula). Fish Physiol Biochem 33(1):21–27CrossRefGoogle Scholar
  9. Gačić Z, Bajić A, Milošević M, Nikčević M, Mićković B, Damjanović I (2007b) Spectral sensitivity of the perch (Perca fluviatilis) from the Danube. Arch Biol Sci Belgrad 59(4):335–340CrossRefGoogle Scholar
  10. Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17:509–528PubMedCrossRefGoogle Scholar
  11. Halstenberg S, Lindgren KM, Samagh PS, Nadal-Vicens M, Balt S, Fernald RD (2005) Diurnal rhythm of cone opsin expression in the teleost fish Haplochromis burtoni. Vis Neurosci 22:135–141PubMedCrossRefGoogle Scholar
  12. Hamasaki DI, DB Bridges C, Meneghini KA (1967) The electroretinogram of three species of elasmobranchs. In: Gilbert PW, Mathewson RF, Rall DP (eds) Sharks Skates and Rays. Johns Hopkins Press, Baltimore, pp 447–463Google Scholar
  13. Ishida AT, Stell WK, Lightfoot DO (1980) Rod and cone inputs to bipolar cells in goldfish retina. J Comp Neurol 191:313–335CrossRefGoogle Scholar
  14. MacNichol EF (1986) A unifying presentation of photopigment spectra. Vision Res 26:543–1556CrossRefGoogle Scholar
  15. Nussdorf JD, Powers MK (1988) Spectral sensitivity of the electroretinograms b-wave in dark–adapted goldfish. Vis Neurosci 1:159–168PubMedCrossRefGoogle Scholar
  16. Parry JWL, Bowmaker JK (2000) Visual pigment reconstitution in intact goldfish retina using synthetic retinaldehyde isomers. Vision Res 40:2241–2247Google Scholar
  17. Powers MK, Easter SS (1978) Wavelength discrimination by the goldfish near absolute visual threshold. Vision Res 18:1149–1154PubMedCrossRefGoogle Scholar
  18. Saszik S, Bilotta J (1999) The effects of temperature on the dark-adapted spectral sensitivity function of the adult zebrafish. Vision Res 39:1051–1058PubMedCrossRefGoogle Scholar
  19. Tsin ATC, Beatty D (1979) Scotopic visual pigment composition in the retinas and vitamins A in the pigment epithelium of the goldfish. Exp Eye Res 29:15–26PubMedCrossRefGoogle Scholar
  20. van Roessel P, Palacios AG, Goldsmith TH (1997) Activity of long-wavelength cones under scotopic conditions in the cyprinid fish Danio aequipinnatus. J Comp Physiol 181:493–500CrossRefGoogle Scholar
  21. Witkovsky P (1968) The effect of chromatic adaptation on color sensitivity of the carp electroretinogram. Vision Res 8:823–837PubMedCrossRefGoogle Scholar
  22. Yang XL, Fan TX, Li JD (1990) Electroretinographic b-wave merely reflects the activity of the rod system in the dark-adapted carp retina. Vision Res 30:993–999PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Z. Gačić
    • 1
  • A. Bajić
    • 2
  • M. Milošević
    • 2
  • M. Nikčević
    • 1
  • B. Mićković
    • 1
  • A. Hegediš
    • 1
  • L. Gačić
    • 2
  • I. Damjanović
    • 3
  1. 1.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of BiologyUniversity of BelgradeBelgradeSerbia
  3. 3.Institute for Problems of Information TransmissionRussian Academy of ScienceMoscowRussia

Personalised recommendations