Postprandial molecular responses in the liver of the barramundi, Lates calcarifer

Abstract

The regulation of gene expression by nutrients is an important mechanism governing energy storage and growth in most animals, including fish. At present, very few genes that regulate intermediary metabolism have been identified in barramundi, nor is there any understanding of their nutritional regulation. In this study, a partial barramundi liver transcriptome was assembled from next-generation sequencing data and published barramundi EST sequences. A large number of putative metabolism genes were identified in barramundi, and the changes in the expression of 24 key metabolic regulators of nutritional pathways were investigated in barramundi liver over a time series immediately after a meal of a nutritionally optimised diet for this species. Plasma glucose and free amino acid levels showed a mild postprandial elevation which peaked 2 h after feeding, and had returned to basal levels within 4 or 8 h, respectively. Significant activation or repression of metabolic nuclear receptor regulator genes were observed, in combination with activation of glycolytic and lipogenic pathways, repression of the final step of gluconeogenesis and activation of the Akt-mTOR pathway. Strong correlations were identified between a number of different metabolic genes, and the coordinated co-regulation of these genes may underlie the ability of this fish to utilise dietary nutrients. Overall, these data clearly demonstrate a number of unique postprandial responses in barramundi compared with other fish species and provide a critical step in defining the response to different dietary nutrient sources.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allan GL, Booth M, Stone DAJ, Anderson A (2003) Aquaculture diet development subprogram: ingredient evaluation (No. FRDC 1996/391). NSW fisheries final report series

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  3. Anemaet IG, Méton I, Salgado MC, Fernández F, Baanante IV (2008) A novel alternatively spliced transcript of cytosolic alanine aminotransferase gene associated with enhanced gluconeogenesis in liver of Sparus aurata. Int J Biochem Cell Biol 40:2833–2844

    Google Scholar 

  4. Archer A, Lauter G, Hauptmann G, Mode A, Gustafsson J-A (2008) Transcriptional activity and developmental expression of liver X receptor (LXR) in zebrafish. Dev Dyn 237:1090–1098

    CAS  PubMed  Article  Google Scholar 

  5. Assimacopoulos-Jeannet F, Jeanrenaud B (1990) Insulin activates 6-phosphofructo-2-kinase and pyruvate kinase in the liver. Indirect evidence for an action via a phosphatase. J Biol Chem 265:7202–7206

    CAS  PubMed  Google Scholar 

  6. Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N (2009) Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab 296:E592–E602

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. Calkin AC, Tontonoz P (2012) Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 13:213–224

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Caseras A, Méton I, Fernandez F, Baanante IV (2000) Glucokinase gene expression is nutritionally regulated in liver of gilthead sea bream (Sparus aurata). Biochim Biophys Acta 1493:135–141

    CAS  PubMed  Article  Google Scholar 

  9. Caseras A, Méton I, Vives C, Egea M, Fernandez F, Baanante IV (2002) Nutritional regulation of glucose-6-phosphatase gene expression in liver of the Gilthead sea bream (Sparus aurata). Br J Nutr 88:607

    CAS  PubMed  Article  Google Scholar 

  10. Catacutan MR, Coloso RM (1997) Growth of juvenile Asian seabass, Lates calcarifer, fed varying carbohydrate and lipid levels. Aquaculture 149:137–144

    CAS  Article  Google Scholar 

  11. Cho HK, Kong HJ, Kim HY, Cheong JJ (2011) Characterization of Paralichthys olivaceus peroxisome proliferator-activated receptor-α gene as a master regulator of flounder lipid metabolism. Gen Comp Endocrinol 175:39–47

    CAS  PubMed  Article  Google Scholar 

  12. Clarke SDS (2001) Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome. J Nutr 131:1129–1132

    CAS  PubMed  Google Scholar 

  13. Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    CAS  PubMed  Article  Google Scholar 

  14. Craig PM, Moon TW (2011) Fasted zebrafish mimic genetic and physiological responses in mammals: a model for obesity and diabetes? Zebrafish 8:109–117

    CAS  PubMed  Article  Google Scholar 

  15. Cruz-Garcia L, Minghetti M, Navarro I, Tocher DR (2009a) Molecular cloning, tissue expression and regulation of liver X receptor (LXR) transcription factors of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Comp Biochem Phys B 153:81–88

    CAS  Article  Google Scholar 

  16. Cruz-Garcia L, Saera-Vila A, Navarro I, Calduch-Giner J, Pérez-Sanchez J (2009b) Targets for TNFalpha-induced lipolysis in gilthead sea bream (Sparus aurata L.) adipocytes isolated from lean and fat juvenile fish. J Exp Biol 212:2254–2260

    CAS  PubMed  Article  Google Scholar 

  17. Cruz-Garcia L, Sánchez-Gurmaches J, Gutierrez J, Navarro I (2011) Regulation of LXR by fatty acids, insulin, growth hormone and tumor necrosis factor-α in rainbow trout myocytes. Comp Biochem Phys A 160:125–136

    CAS  Article  Google Scholar 

  18. Cruz-Garcia L, Sánchez-Gurmaches J, Gutierrez J, Navarro I (2012) Role of LXR in trout adipocytes: target genes, hormonal regulation, adipocyte differentiation and relation to lipolysis. Comp Biochem Phys A 163:120–126

    CAS  Article  Google Scholar 

  19. De Santis C, Smith-Keune C, Jerry DR (2011) Normalizing RT-qPCR data: are we getting the right answers? An appraisal of normalization approaches and internal reference genes from a case study in the Finfish Lates calcarifer. Mar Biotechnol 13:170–180

    CAS  PubMed  Article  Google Scholar 

  20. Dentin R, Girard J, Postic C (2005) Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87:81–86

    CAS  PubMed  Article  Google Scholar 

  21. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688

    CAS  PubMed  Google Scholar 

  22. Düvel KK, Yecies JJ, Menon SS, Raman PP, Lipovsky AA, Souza AA, Triantafellow EE, Ma QQ, Gorski RR, Cleaver SS, Vander Heiden MM, MacKeigan JJ, Finan PP, Clish CC, Murphy LL, Manning BB (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39:13

    Article  Google Scholar 

  23. Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86:839–848

    PubMed  Article  Google Scholar 

  24. Enes P, Peres H, Couto A, Oliva-Teles A (2010) Growth performance and metabolic utilization of diets including starch, dextrin, maltose or glucose as carbohydrate source by gilthead sea bream (Sparus aurata) juveniles. Fish Physiol Biochem 36:903–910

    CAS  PubMed  Article  Google Scholar 

  25. Enes P, Panserat S, Kaushik S, Oliva-Teles A (2011) Dietary carbohydrate utilization by European sea bass (Dicentrarchus labrax L.) and Gilthead sea bream (Sparus aurata L.) Juveniles. Rev Fish Sci 19:201–215

    CAS  Article  Google Scholar 

  26. Enes P, Pousão-Ferreira P, Salmerón C, Capilla E, Navarro I, Gutierrez J, Oliva-Teles A (2013) Effect of guar gum on glucose and lipid metabolism in White sea bream Diplodus sargus. Fish Physiol Biochem 39:159–169

    CAS  PubMed  Article  Google Scholar 

  27. Escher PP, Braissant OO, Basu-Modak SS, Michalik LL, Wahli WW, Desvergne BB (2001) Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142:4195–4202

    CAS  PubMed  Article  Google Scholar 

  28. Fernandez F, Miquel AG, Cordoba M, Varas M, Méton I, Caseras A, Baanante IV (2007) Effects of diets with distinct protein-to-carbohydrate ratios on nutrient digestibility, growth performance, body composition and liver intermediary enzyme activities in gilthead sea bream (Sparus aurata, L.) fingerlings. J Exp Mar Biol Ecol 343:1–10

    Google Scholar 

  29. Figueiredo-Garutti MM, Navarro II, Capilla EE, Souza RR, Moraes GG, Gutiérrez JJ, Vicentini-Paulino MM (2002) Metabolic changes in Brycon cephalus (Teleostei, Characidae) during post-feeding and fasting. Comp Biochem Phys A 132:467–476

    CAS  Article  Google Scholar 

  30. Fisher G, Arias I, Quesada I, D’Aniello S, Errico F, Di Fiore M, D’Aniello A (2001) A fast and sensitive method for measuring picomole levels of total free amino acids in very small amounts of biological tissues. Amino Acids 20:163–173

    CAS  PubMed  Article  Google Scholar 

  31. Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl A, Nelson R, Overturf K, Rust M, Sealy W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E (2007) Expanding the utilisation of sustainable plant products in aquafeeds: a review. Aquac Res 38:551–579

    CAS  Article  Google Scholar 

  32. Georgiadi A, Kersten S (2012) Mechanisms of gene regulation by fatty acids. Adv Nutr 3:127–134

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. Girard J, Ferré P, Foufelle F (1997) Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu Rev Nutr 17:325–352

    CAS  PubMed  Article  Google Scholar 

  34. Glass CK (1994) Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev 15:391–407

    CAS  PubMed  Google Scholar 

  35. Glencross B (2006) The nutritional management of barramundi, Lates calcarifer: a review. Aquacult Nutr 12:291–309

    CAS  Article  Google Scholar 

  36. Glencross BD, Booth M, Allan GL (2007) A feed is only as good as its ingredients: a review of ingredient evaluation for aquaculture feeds. Aquacult Nutr 13:17–34

    CAS  Article  Google Scholar 

  37. Glencross B, Rutherford N, Jones B (2011) Evaluating options for fishmeal replacement in diets for juvenile barramundi (Lates calcarifer). Aquacult Nutr 17:E722–E732

    Article  Google Scholar 

  38. Glencross BD, Blyth D, Tabrett SJ, Bourne N, Irvin S, Fox-Smith T, Smullen RP (2012) An examination of digestibility and technical qualities of a range of cereal grains when fed to juvenile barramundi (Lates calcarifer) in extruded diets. Aquacult Nutr 18:388–399

    CAS  Article  Google Scholar 

  39. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  40. Hanson RW, Reshef L (1997) Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu Rev Biochem 66:581–611

    CAS  PubMed  Article  Google Scholar 

  41. Kalaany NY, Mangelsdorf DJ (2006) LXRs AND FXR: the Yin and Yang of cholesterol and fat metabolism. Annu Rev Physiol 68:159–191

    CAS  PubMed  Article  Google Scholar 

  42. Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W (1993) Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci 90:2160–2164

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. Kim S-Y, Kim H-I, Kim T-H, Im S-S, Park S-K, Lee I-K, Kim K-S, Ahn Y-H (2004) SREBP-1c mediates the insulin-dependent hepatic glucokinase expression. J Biol Chem 279:30823–30829

    CAS  PubMed  Article  Google Scholar 

  44. Kininis M, Kraus WL (2008) A global view of transcriptional regulation by nuclear receptors: gene expression, factor localization, and DNA sequence analysis. Nucl Recept Signal 6:e005

    PubMed Central  PubMed  Google Scholar 

  45. Lansard M, Panserat S, Plagnes-Juan E, Seiliez I, Skiba-Cassy S (2010) Integration of insulin and amino acid signals that regulate hepatic metabolism- related gene expression in rainbow trout: role of TOR. Amino Acids 39:801–810

    CAS  PubMed  Article  Google Scholar 

  46. Lansard M, Panserat S, Plagnes-Juan E, Dias K, Seiliez I, Skiba-Cassy S (2011) l-leucine, l-methionine, and l-lysine are involved in the regulation of intermediary metabolism-related gene expression in rainbow trout hepatocytes. J Nutr 141:75–80

    CAS  PubMed  Article  Google Scholar 

  47. Leaver MJ, Boukouvala E, Antonopoulou E, Diez A, Favre-Krey L, Ezaz MT, Bautista JM, Tocher DR, Krey G (2005) Three peroxisome proliferator-activated receptor isotypes from each of two species of marine fish. Endocrinology 146:3150–3162

    CAS  PubMed  Article  Google Scholar 

  48. Librán-Pérez M, Figueiredo-Silva AC, Panserat S, Geurden I, Miguez JM, Polakof S, Soengas JL (2013) Response of hepatic lipid and glucose metabolism to a mixture or single fatty acids: possible presence of fatty acid-sensing mechanisms. Comp Biochem Phys A 164:241–248

    Article  Google Scholar 

  49. Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20:2471–2472

    CAS  PubMed  Article  Google Scholar 

  50. Mennigen JA, Panserat S, Larquier M, Plagnes-Juan E, Médale F, Seiliez I, Skiba-Cassy S (2012) Postprandial regulation of hepatic microRNAs predicted to target the insulin pathway in rainbow trout. PLoS ONE 7:e38604

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  51. Méton I, Mediavilla D, Caseras A, Cantó E, Fernandez F, Baanante IV (1999) Effect of diet composition and ration size on key enzyme activities of glycolysis-gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata). Br J Nutr 82:223–232

    PubMed  Google Scholar 

  52. Méton I, Caseras A, Fernandez F, Baanante IV (2004) Molecular cloning of hepatic glucose-6-phosphatase catalytic subunit from gilthead sea bream (Sparus aurata): response of its mRNA levels and glucokinase expression to refeeding and diet composition. Comp Biochem Phys B 138:145–153

    Article  Google Scholar 

  53. Moon T (2001) Glucose intolerance in teleost fish: fact or fiction? Comp Biochem Phys B 129:243–249

    CAS  Article  Google Scholar 

  54. Morais S, Pratoomyot J, Torstensen BE, Taggart JB, Guy DR, Bell JG, Tocher DR (2011) Diet × genotype interactions in hepatic cholesterol and lipoprotein metabolism in Atlantic salmon (Salmo salar) in response to replacement of dietary fish oil with vegetable oil. Br J Nutr 106:1457–1469

    CAS  PubMed  Article  Google Scholar 

  55. National Research Council (NRC) (2011) Nutrient requirements of fish and shrimp. National Academy Press, Washington, DC

  56. Oku H, Umino T (2008) Molecular characterization of peroxisome proliferator-activated receptors (PPARs) and their gene expression in the differentiating adipocytes of red sea bream Pagrus major. Comp Biochem Phys B 151:268–277

    Article  Google Scholar 

  57. Olefsky JM (2001) Nuclear receptor minireview series. J Biol Chem 276:36863–36864

    CAS  PubMed  Article  Google Scholar 

  58. Olsvik PA, Lie KK, Jordal A-EO, Nilsen TO, Hordvik II (2004) Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol 6:21

    Article  Google Scholar 

  59. Panserat S, Kaushik SJ (2010) Regulation of gene expression by nutritional factors in fish. Aquac Res 41:751–762

    CAS  Article  Google Scholar 

  60. Panserat S, Médale F, Blin C, Brèque J, Vachot C, Plagnes-Juan E, Gomes E, Krishnamoorthy R, Kaushik S (2000) Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead seabream, and common carp. Am J Physiol Reg I 278:R1164–R1170

    CAS  Google Scholar 

  61. Panserat S, Capilla E, Gutierrez J, Frappart PO, Vachot C, Plagnes-Juan E, Aguirre P, Brèque J, Kaushik S (2001) Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout (Oncorhynchus mykiss) by a single meal with glucose. Comp Biochem Physiol B 128:275–283

    CAS  PubMed  Article  Google Scholar 

  62. Pérez-Jiménez A, Cardenete G, Hidalgo MC, García-Alcázar A, Abellán E, Morales AE (2012) Metabolic adjustments of Dentex dentex to prolonged starvation and refeeding. Fish Physiol Biochem 38:1145–1157

    PubMed  Article  Google Scholar 

  63. Polak P, Hall MN (2009) mTOR and the control of whole body metabolism. Curr Opin Cell Biol 21:209–218

    CAS  PubMed  Article  Google Scholar 

  64. Polakof S, Panserat S, Soengas JL, Moon TW (2012) Glucose metabolism in fish: a review. J Comp Physiol B 182:1015–1045

    CAS  PubMed  Article  Google Scholar 

  65. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Griffiths JR, Chung Y-L, Schulze A (2008) SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8:224–236

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  66. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, Shan B, Brown MS, Goldstein JL, Mangelsdorf DJ (2000) Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Devel 14:2819–2830

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  67. Reschly EJ, Ai N, Ekins S, Welsh WJ, Hagey LR, Hofmann AF, Krasowski MD (2008) Evolution of the bile salt nuclear receptor FXR in vertebrates. J Lipid Res 49:1577–1587

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  68. Resuehr D, Spiess A-N (2003) A real-time polymerase chain reaction-based evaluation of cDNA synthesis priming methods. Anal Biochem 322:287–291

    CAS  PubMed  Article  Google Scholar 

  69. Salgado MC, Méton I, Egea M, Baanante IV (2004) Transcriptional regulation of glucose-6-phosphatase catalytic subunit promoter by insulin and glucose in the carnivorous fish, Sparus aurata. J Mol Endocrinol 33:783–795

    CAS  PubMed  Article  Google Scholar 

  70. Sato R (2010) Sterol metabolism and SREBP activation. Arch Biochem Biophys 501:177–181

    CAS  PubMed  Article  Google Scholar 

  71. Savkur RS, Bramlett KS, Michael LF, Burris TP (2005) Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor. Biochem Biophys Res Comm 329:391–396

    CAS  PubMed  Article  Google Scholar 

  72. Seiliez I, Gabillard JC, Skiba-Cassy S, Garcia-Serrana D, Gutierrez J et al (2008) An in vivo and in vitro assessment of TOR signaling cascade in rainbow trout (Oncorhynchus mykiss). Am J Physiol Reg I 295:R329–R335

    CAS  Google Scholar 

  73. Seiliez I, Panserat S, Lansard M, Polakof S, Plagnes-Juan E, Surget A, Dias K, Larquier M, Kaushik S, Skiba-Cassy S (2011) Dietary carbohydrate-to-protein ratio affects TOR signaling and metabolism-related gene expression in the liver and muscle of rainbow trout after a single meal. Am J Physiol Reg I 300:R733–R743

    CAS  Google Scholar 

  74. Seiliez I, Médale F, Aguirre P, Larquier M, Lanneretonne L, Alami-Durante H, Panserat S, Skiba-Cassy S (2013) Postprandial regulation of growth- and metabolism-related factors in zebrafish. Zebrafish 10:237–248

    CAS  PubMed  Article  Google Scholar 

  75. Skiba-Cassy S, Lansard M, Panserat S, Médale F (2009) Rainbow trout genetically selected for greater muscle fat content display increased activation of liver TOR signaling and lipogenic gene expression. Am J Physiol Reg I 297:R1421–R1429

    CAS  Google Scholar 

  76. Srivastava AK, Pandey SK (1998) Potential mechanism(s) involved in the regulation of glycogen synthesis by insulin. Mol Cell Biochem 182:135–141

    CAS  PubMed  Article  Google Scholar 

  77. Tsai M-L, Chen H-Y, Tseng M-C, Chang R-C (2008) Cloning of peroxisome proliferators activated receptors in the cobia (Rachycentron canadum) and their expression at different life-cycle stages under cage aquaculture. Gene 425:69–78

    CAS  PubMed  Article  Google Scholar 

  78. Viegas I, Rito J, Jarak I, Leston S, Carvalho R, Metón I, Pardal M, Baanante I, Jones J (2012) Hepatic glycogen synthesis in farmed European seabass (Dicentrarchus labrax L.) is dominated by indirect pathway fluxes. Comp Biochem Physiol A 163:22–29

    CAS  Article  Google Scholar 

  79. Wullschleger SS, Loewith RR, Hall MM (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    CAS  PubMed  Article  Google Scholar 

  80. Zhu Y, Li F, Guo GL (2011) Tissue-specific function of farnesoid X receptor in liver and intestine. Pharmacol Res 63:259–265

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Australian Centre for International Agricultural Research (ACIAR) project FIS-2006-141. We gratefully acknowledge the review of a draft of this manuscript by Katherine Morton.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicholas M. Wade.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 69 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wade, N.M., Skiba-Cassy, S., Dias, K. et al. Postprandial molecular responses in the liver of the barramundi, Lates calcarifer . Fish Physiol Biochem 40, 427–443 (2014). https://doi.org/10.1007/s10695-013-9854-y

Download citation

Keywords

  • Fish
  • Liver
  • Metabolism
  • Nutrigenomics