Skip to main content
Log in

Pro-oxidant and antioxidant responses in the liver and kidney of wild Goodea gracilis and their relation with halomethanes bioactivation

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In mammals, it has been shown that halomethanes (HM) are bioactivated by enzymes such as CYP 2E1 and the theta isoform of GST to produce reactive metabolites. However, in fish, little information is available, although HM can form autochthonously in aquatic environments. This study assessed the effect of HM in dusky splitfin (Goodea gracilis) from three lakes of the Valley of Mexico by analysing specific HM biomarkers as well as a broad range of biomarkers. The concentration of HM was a function of its half-life (higher in deep waters), while its precursors and solar radiation are secondary factors that determine its concentration. The kidney showed higher basal metabolism than the liver, probably because of its function as a haematopoietic and filtration organ. Using integrated biological response version 2 (IBRv2), it was found that the hepatic and renal O2· content is a pro-oxidant force capable of inducing oxidative stress (ROOH, TBARS and RC=O). Early damage was found to be dependent on low concentrations of HM in Major Lake, whereas late damage was observed in fish exposed to higher concentrations of HM in Zumpango Lake and Ancient Lake. The activities of enzymes involved in antioxidant defence seemed to be inefficient. The quantitative assessment of biomarkers (ANOVA) and the estimate of parameter A obtained from IBRv2 provided different information. However, the data support the greater predictive power of IBRv2, but it requires a series of interrelated biomarkers to infer these possibilities. G. gracilis presents marked patterns of adaptation, which are dependant on the HM concentrations in environmental mixtures, although the response is complex and many toxicants could induce similar responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ATSDR Agency for Toxic Substances and Disease Registry (1999) Diclorobromometano (Bromodichloromethane) ToxFacs

  • Beliaeff B, Burgeot T (2002) Integrated biomarker response: a useful tool for ecological risk assessment. Environ Tox Chem 21(6):1316–1322

    Article  CAS  Google Scholar 

  • Bindokas VP, Jordán J, Lee CC, Miller RJ (1996) Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 16:1324–1336

    PubMed  CAS  Google Scholar 

  • Borg DC, Schaich KM (1984) Cytotoxicity from coupled redox cycling of oxidizing xenobiotics and metal. Israel J Chem 24:38–53

    CAS  Google Scholar 

  • Boryslawskyj M, Garrood AC, Pearson JT, Woodhead D (1998) Elevation of glutathione-S-transferase activity as a stress response to organochlorine compounds, in the freshwater mussel, Sphaerium corneum. Mar Environ Res 24:101–104

    Article  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Meth Enzymol 52:302–310

    Article  PubMed  CAS  Google Scholar 

  • Cannady EA, Dyer CA, Christian PJ, Sipes G, Hoyer PB (2003) Expression and activity of cytochromes P4502E1, 2A, and 2B in the mouse ovary: the effects of 4-viylcyclohexane and its diepoxide metabolite. Toxicol Sci 73:423–430

    Article  PubMed  CAS  Google Scholar 

  • Christof O, Seifert R, Michaelis W (2002) Volatile halogenated organic compounds in European Estuaries. Biogeochemistry 59:143–160

    Article  CAS  Google Scholar 

  • Davidson AJ, Zon LI (2004) The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene 23:7233–7246

    Article  PubMed  CAS  Google Scholar 

  • Dekant W, Vamvakas S (1993) Glutathione-dependent bioactivation of xenobiotics. Xenobiotica 23(8):373–387

    Article  Google Scholar 

  • Elshorbagy W, Abdulkarim M (2006) Chlorination byproducts in drinking water produced from thermal desalination in United Arab Emirates. Environ Monit Assess 123(1–3):313–331

    Article  PubMed  CAS  Google Scholar 

  • Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606

    Article  PubMed  CAS  Google Scholar 

  • Hermes-Lima M (2004) Oxygen in biology and biochemistry: role of free radicals. In: Storey KB (ed) Functional metabolism: regulation and adaptation. Wiley-Liss, Inc., Hoboken, New Jersey, pp 319–351

    Google Scholar 

  • Hodgson EK, Fridovich I (1975) The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry 14(24):5294–5299

    Article  PubMed  CAS  Google Scholar 

  • Hua B, Veum K, Yang J, Jones J, Deung B (2010) Parallel factor analysis of fluorescence EEM spectra to identify THM precursors in lake waters. Environ Monit Assess 161(1–4):71–81

    Article  PubMed  CAS  Google Scholar 

  • Iriarte-Velasco U, Álvarez-Uriarte JI, González-Velasco JR (2006) Kinetics of chloroform formation fron humic and fulvic acid chlorination. J Environ Sci Health A41:1495–1508

    Google Scholar 

  • Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  • Jiang ZY, Woollard AC, Wolff SP (1991) Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids 26(10):853–856

    Article  PubMed  CAS  Google Scholar 

  • Kitlar T, Döring F, Kinne RKH, Deutscher J, Diedrich DF, Frank R, Wallmeier H (1994) Interaction of phlorizin, a potent inhibitor of the Na +/d-glucose cotransporter, with the NADPH-binding site of mammalian catalases. Protein Sci 3(4):696–700

    Article  PubMed  CAS  Google Scholar 

  • Kono Y, Fridovich I (1982) Superoxide radical inhibits catalase. J Biol Chem 257:5751–5761

    PubMed  CAS  Google Scholar 

  • Kortmann RW, Rich PH (1994) Lake ecosystem energetics: the missing management link. Lake Reserv Manage 8:77–97

    Article  Google Scholar 

  • Le Cren E (1951) The length-weight relation and seasonal cycle in gonad weight and condition in the perch Perca fluviatilis. J Anim Ecol 20(2):201–219

    Article  Google Scholar 

  • Lei XG, Evenson JK, Thompson KM, Sunde RA (1995) Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J Nutr 125(6):1438–1446

    PubMed  CAS  Google Scholar 

  • Levine RL, Williams JA, Stadtman EP, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  PubMed  CAS  Google Scholar 

  • Matkovics B, Novák R, Hanh HD, Szabó L, Varga SZI (1977) A comparative study on some more important experimental animal peroxide metabolism enzymes. Comp Biochem Physiol, 56B 56(4):397–402

    CAS  Google Scholar 

  • Mazari-Hiriart M, Ponce-de-León S, López-Vidal Y, Islas-Macías P, Amieva-Fernández RI, Quiñones-Falconi F (2008) Microbiological implications of periurban agriculture and water reuse in Mexico City. PLoS ONE 3(5):e2305

    Article  PubMed  Google Scholar 

  • Melnick RL, Kohn MC, Dunnick JK, Leininger JR (1998) Regenerative hyperplasia is not required for liver tumor induction in female B6C3F1 mice exposed to trihalomethanes. Toxicol Appl Pharmacol 148(1):137–147

    Article  PubMed  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide dismutase anion in the autooxidation of ephinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    PubMed  CAS  Google Scholar 

  • Porubsky PR, Meneely KM, Scott EE (2008) Structures of human cytochrome P-450 2E1, insights into the binding of inhibitors and both small molecular weight and fatty acid substrates. J Biol Chem 283(48):33698–33707

    Article  PubMed  CAS  Google Scholar 

  • Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA (1991) Detection of catalase in rat heart mitochondria. J Biol Chem 266:22028–22034

    PubMed  CAS  Google Scholar 

  • SAGARPA (2001) Norma Oficial Mexicana NOM-062-ZOO-1999 Especificaciones técnicas para la producción, cuidado y el uso de animales de laboratorio. Diario Oficial de la Federación. Segunda Sección, México, pp 1–57

    Google Scholar 

  • Salameh E, Alawi M, Batarseh M, Jiries A (2002) Determination of trihalomethanes and the ionic composition of groundwater at Amman City, Jordan. Hydrogeol J 10:332–339

    Article  CAS  Google Scholar 

  • Sanchez W, Burgeot T, Porcher JM (2012) A novel “Integrated Biomarker Response” calculation based on reference deviation concept. Environ Sci Pollut Res Int 20(5):2721–2725

    Article  PubMed  Google Scholar 

  • Sapone A, Gustavino B, Monfrinotti M, Canastro D, Brócoli M, Pozzetti L, Affatato A, Valgimigli L, Forti GC, Pedulli GF, Biagi GL, Andel-Rahman SZ, Paolini M (2007) Perturbation of cytochrome P450, generation of oxidative stress and induction of DNA damage in Cyprinus carpio exposed in situ to potable surface water. Mut Res 626(1–2):143–154

    CAS  Google Scholar 

  • Senem-Uyguner C, Hellriegel C, Otto W, Larive CK (2004) Characterization of humic substances: implications for trihalomethane formation. Analyt Bioanalyt Chem 378:1579–1586

    Article  Google Scholar 

  • Stachura DL, Reyes JR, Bartunek P, Paw BH, Zon LI, Traver D (2009) Zebrafish kidney stromal cell lines support multilineage hematopoiesis. Blood 114(2):279–289

    Article  PubMed  CAS  Google Scholar 

  • Tanabe S, Minh TB (2010) Dioxins and organohalogen contaminants in the Asia-Pacific region. Ecotoxicology 19(3):463–478

    Article  PubMed  CAS  Google Scholar 

  • Teuschler LK, Gennings C, Stiteler WM, Hertberg RC, Colman JT, Thiyagarajah A, Lipscomb JC, Hartley WR, Simmons JE (2000) A multiple-purpose design approach to the evaluation of risks from mixtures of disinfection by-products. Drug Chem Toxicol 23(1):307–321

    Article  PubMed  CAS  Google Scholar 

  • Vega-López A, Jiménez-Orozco FA, García-Latorre E, Domínguez-López ML (2008) Oxidative stress response in an endangered goodeid fish (Girardinichthys viviparus) by exposure to water from its extant localities. Ecotoxicol Environ Saf 71(1):94–103

    Article  PubMed  Google Scholar 

  • Vega-López A, Jiménez-Orozco FA, Jiménez-Zamudio LA, García-Latorre E, Domínguez-López ML (2009) Phase I enzyme induction in Girardinichthys viviparus, an endangered goodeid fish, exposed to water from native localities enriched with polychlorinated biphenyls. Arch Environ Contam Toxicol 57(3):561–570

    Article  PubMed  Google Scholar 

  • Vega-López A, Carrillo-Morales CI, Olivares-Rubio HF, Domínguez-López ML, García-Latorre E (2012) Evidence of bioactivation of halomethanes and its relation to oxidative stress response in Chirostoma riojai, an endangered fish from a polluted lake in Mexico. Arch Environ Contam Toxicol 62(3):479–493

    Article  PubMed  Google Scholar 

  • Vega-López A, Ayala-López G, Posadas-Espadas BP, Olivares-Rubio HF, Dzul-Caamal R (2013) Relations of oxidative stress in freshwater phytoplankton with heavy metals and polycyclic aromatic hydrocarbons. Comp Biochem Physiol A Mol Integr Physiol. doi:10.1016/j.cbpa.2013.01.026. (Epub ahead of print)

  • Warholm M, Alexandre A-K, Högberg J, Sigvardsson K, Rannung A (1994) Polymorphic distribution of gluthatione transferase activity with methyl chloride in human blood. Pharmacogenetics 4:307–311

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by CONACyT-ICyTDF and SIP-IPN. H. F. Olivares-Rubio is a M.Sc. student with a scholarship from CONACyT. M. L. Martínez-Torres is a B.Sc. student with a scholarship from CONACyT. M. L. Domínguez-López, E. García-Latorre and A. Vega-López are fellows of Estímulos al Desempeño en Investigación and Comisión y Fomento de Actividades Académicas (Instituto Politécnico Nacional) and Sistema Nacional de Investigadores (SNI, CONACyT, México).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Vega-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivares-Rubio, H.F., Martínez-Torres, M.L., Domínguez-López, M.L. et al. Pro-oxidant and antioxidant responses in the liver and kidney of wild Goodea gracilis and their relation with halomethanes bioactivation. Fish Physiol Biochem 39, 1603–1617 (2013). https://doi.org/10.1007/s10695-013-9812-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-013-9812-8

Keywords

Navigation