Fish Physiology and Biochemistry

, Volume 39, Issue 4, pp 807–827 | Cite as

Muscle development and body growth in larvae and early post-larvae of shi drum, Umbrina cirrosa L., reared under different larval photoperiod: muscle structural and ultrastructural study

  • Maria D. AyalaEmail author
  • Emilia Abellán
  • Marta Arizcun
  • Alicia García-Alcázar
  • F. Navarro
  • Alfonso Blanco
  • Octavio M. López-Albors


Shi drum specimens were maintained under four different photoperiod regimes: a natural photoperiod regime (16L:8D), constant light (24L), equal durations of light and dark (12L:12D) and a reduced number of daylight hours (6L:18D) from hatching until the end of larval metamorphosis. Specimens were then kept under natural photoperiod conditions until 111 days post-hatching. Muscle and body parameters were studied. During the vitelline phase, there was little muscle growth and no photoperiod effects were reported; however, a monolayer of red muscle and immature white muscle fibres were observed in the myotome. At hatching, external cells (presumptive myogenic cells) were already present on the surface of the red muscle. At the mouth opening, some presumptive myogenic cells appeared between the red and white muscles. At 20 days, new germinal areas were observed in the apical extremes of the myotome. At this stage, the 16L:8D group (followed by the 24L group) had the longest body length, the largest cross-sectional area of white muscle and the largest white muscle fibres. Conversely, white muscle hyperplasia was most pronounced in the 24L group. Metamorphosis was complete at 33 days in the 24L and 12L:12D groups. At this moment, both groups showed numerous myogenic precursors on the surface of the myotome as well as among the adult muscle fibres (mosaic hyperplastic growth). The 16L:8D group completed metamorphosis at 50 days, showing a similar degree of structural maturity in the myotome to that described in the 24L and 12L:12D groups at 33 days. When comparing muscle growth at the end of the larval period, hypertrophy was highest in the 16L:8D group, whereas hyperplasia was higher in the 24L and 16L:8D groups. At 111 days, all groups showed the adult muscle pattern typical of teleosts; however, the cross-sectional area of white muscle, white muscle fibre hyperplasia, body length and body weight were highest in the 24L group, followed by the 12L:12D group; white muscle hypertrophy was similar in all groups. Larval survival was higher under natural photoperiod conditions compared to all the other light regimes.


Muscle growth Myogenic cells Photoperiod regime Ultrastructure 



This work was made possible by collaboration between the Instituto Español de Oceanografía and the Universidad de Murcia.


  1. Abellán E, García-Alcázar A, Arizcun M, Nortes MD, García-Alcázar S (2000) Effect of the photoperiod on growth, survival and inflation of the swim bladder in dentex (Dentex dentex L.) larvae. Cahiers Options Mediterranèennes. Zaragoza 47:177–180Google Scholar
  2. Arizcun M, López-Albors O, García Alcázar A, Orenes M, Vázquez JM, Abellán E (2005) Crecimiento del músculo blanco en larvas y postlarvas de dentón Dentex dentex L. Resúmenes del X Congreso Nacional de Acuicultura. GandíaGoogle Scholar
  3. Arizcun M, Abellán E, García-Alcázar A (2009) Primeros resultados sobre reproducción y cultivo larvario de verrugato (Umbrina cirrosa L.). XII Congreso Nacional de Acuicultura (Madrid). Libro de actas, pp 518–519Google Scholar
  4. Atkinson D (1996) Ectotherm life-history responses to development temperature. In: Johnston IA, Bennett AF (eds) Phenotypic and evolutionary adaptation of organisms to temperature. Society for Experimental Biology Seminar Series. Cambridge University Press, Cambridge, pp 183–204Google Scholar
  5. Ayala MD (1999) Influencia de la temperatura sobre el crecimiento muscular de la lubina, Dicentrarchus labrax L., durante el desarrollo larvario. Tesis doctoral. Universidad de Murcia.
  6. Ayala MD, López-Albors O, Gil F, Latorre R, Vázquez JM, García-Alcázar A, Abellán E, Ramírez G, Moreno F (2000) Temperature effects on muscle growth of the axial musculature of the sea bass (Dicentrarchus labrax L.). Anat Histol Embryol 29:235–241CrossRefPubMedGoogle Scholar
  7. Ayala MD, López-Albors O, Gil F, García-Alcázar A, Abellán E, Alarcón JA, Álvarez MC, Ramírez-Zarzosa G, Moreno F (2001) Temperature effects on muscle growth in two populations (Atlantic and Mediterranean) of sea bass, Dicentrarchus labrax L. Aquaculture 202:359–370CrossRefGoogle Scholar
  8. Ayala MD, López-Albors O, García Alcázar A, Abellán E, Latorre R, Vázquez JMª, Ramírez Zarzosa G, Martínez F, Gil R (2003) Effect of two thermal regimes on the muscle growth dynamics of sea bass larvae, Dicentrarchus labrax L. Anat Histol Embryol 32:271–275CrossRefPubMedGoogle Scholar
  9. Ayala MD, López-Albors O, Gil F, Abellán E, García Alcázar A, Abdel I, Latorre R (2005) Revisión: influencia de la temperatura sobre el desarrollo y crecimiento muscular de la lubina, Dicentrarchus labrax L. Anales de Veterinaria 21:55–68Google Scholar
  10. Barahona-Fernandes MH (1979) Some effects of light intensity and photoperiod on the sea bass larvae (Dicentrarchus labrax) reared at the Centre Oceanologique de Bretagne. Aquaculture 17:311–321CrossRefGoogle Scholar
  11. Biswas AK, Seoka M, Inoue Y, Takii K, Kumai H (2005) Photoperiod influences the growth, food intake, feed efficiency and digestibility of red sea bream (Pagrus major). Aquaculture 250:666–673CrossRefGoogle Scholar
  12. Blanco-Vives B, Villamizar N, Ramos J, Bayarri MJ, Chereguini O, Sánchez-Vázquez FJ (2010) Effect of daily thermo- and photo-cycles of different light spectrum on the development of Senegal sole (Solea senegalensis) larvae. Aquaculture 306:137–145CrossRefGoogle Scholar
  13. Blaxter JHS, Hempel G (1963) The influence of egg size on herring larvae (Clupea harengus, L.). J Cons Perm Int Explor Mer 28:211–240Google Scholar
  14. Brand-Saberi B, Christ B (2000) Evolution and development of distinct cell lineages derived from somites. Curr Top Dev Biol 48:1–42CrossRefPubMedGoogle Scholar
  15. Bryson-Richardson RJ, Currie PD (2008) The genetics of vertebrate myogenesis. Nat Rev Genet 9:632–646CrossRefPubMedGoogle Scholar
  16. Buckingham M (2006) Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev 16:525–532CrossRefPubMedGoogle Scholar
  17. Cardellini P, Zanella S, Franceson A, Barbaro A, Bozzato G (1998) Embryological development of Umbrina cirrosa (L.): observations by time-lapse video recording. Biologia Marina Mediterranean 5:413–420Google Scholar
  18. Cardellini P, Franceson A, Zanella S, Bozzato G, Benedetti P, Borgoni N, Barbaro A (1999) Captive rearing of shi drum, Umbrina cirrosa (L.) in different thermal conditions. Biologia Marina Mediterranean 6:287–290Google Scholar
  19. Downing G, Litvak MK (2001) The effect of light intensity and spectrum on the incidence of first feeding by larval haddock. J Fish Biol 59:1566–1578CrossRefGoogle Scholar
  20. Fischer W, Bauchot ML, Schneider M (1987) Fiches FAO d’identification des espèces pour les besoins de la pêche. (Révision 1). Méditerranée et mer Noir. Zone de pêche 37, vol II, Vertébrés. FAO, RomeGoogle Scholar
  21. Gibson S, Johnston IA (1995) Temperature and development in larvae of the turbot Scophthalmus maximus. Mar Biol 124:17–25CrossRefGoogle Scholar
  22. Ginés R, Afonso JM, Argüello A, Zamorano MJ, López JL (2004) The effects of long-day photoperiod on growth, body composition and skin colour in immature gilthead sea bream (Sparus aurata L.). Aquac Res 35:1207–1212CrossRefGoogle Scholar
  23. Hart P, Hutchinson W, Purser G (1996) Effects of photoperiod, temperature and salinity on hatchery-reared larvae of the greenback flounder (Rhombosolea tapirina Günther, 1862). Aquaculture 144:303–311CrossRefGoogle Scholar
  24. Higgins PJ, Thorpe JE (1990) Hyperplasia and hypertrophy in the growth of skeletal muscle in juvenile Atlantic salmon (Salmo salar, L.). J Fish Biol 37:505–519CrossRefGoogle Scholar
  25. Hollway GE, Bryson-Richardson RJ, Berger S, Cole NJ, Hall TE, Currie PD (2007) Whole-somite rotation generates muscle progenitor cell compartments in the developing zebrafish embryo. Dev Cell 12:207–219CrossRefPubMedGoogle Scholar
  26. Johnston IA, Mclay HA (1997) Temperature and family effects on muscle cellularity at hatch and first feeding in Atlantic salmon (Salmo salar L.). Can J Zool 75:64–74CrossRefGoogle Scholar
  27. Johnston IA, Vieira VLA, Hill J (1996) Temperature and ontogeny in ectotherms: muscle phenotype in fish. In: Johnston IA, Bennett AF (eds) Phenotypic and evolutionary adaptation of organisms to temperature. Society for Experimental Biology of Seminar Series. Cambridge University Press, Cambridge, pp 153–181Google Scholar
  28. Johnston IA, Manthri S, Smart A, Campbell P, Nickell D, Alderson R (2003a) Plasticity of muscle fibre number in seawater stages of Atlantic salmon in response to photoperiod manipulation. J Exp Biol 206:3425–3435CrossRefPubMedGoogle Scholar
  29. Johnston IA, Manthri S, Alderson R, Smart A, Campbell P, Nickell D, Robertson B, Paxton CGM, Burt ML (2003b) Freshwater environment affects growth rate and muscle fibre recruitment in seawater stages of Atlantic salmon (Salmo salar). J Exp Biol 206:1337–1351CrossRefPubMedGoogle Scholar
  30. Johnston IA, Manthri S, Bickerdike R, Dingwall A, Luijkx R, Campbell P, Nickel D, Alderson R (2004) Growth performance, muscle structure and flesh quality in out-of-season Atlantic salmon (Salmo salar) smolts reared under two different photoperiod regimes. Aquaculture 237:281–300CrossRefGoogle Scholar
  31. Johnston IA, Bower NI, Macqueen DJ (2011) Growth and the regulation of myotomal muscle mass in teleost fish. J Exp Biol 214:1617–1628CrossRefPubMedGoogle Scholar
  32. Kacperczyk A, Jedrzejowska I, Daczewska M (2011) Differentiation and growth of myotomal muscles in a non-model tropical fish Pterophyllum scalarae (Teleostei: cichlidae). Anat Histol Embryol 40:411–418CrossRefPubMedGoogle Scholar
  33. Kissil GW, Lupatsch I, Elizur A, Zohar Y (2001) Long photoperiod delayed spawning and increased somatic growth in gilthead sea bream (Sparus aurata). Aquaculture 200:363–379CrossRefGoogle Scholar
  34. Koumans JTM, Akster HA (1995) Myogenic cells in development and growth of fish. Comp Biochem Physiol 110A(1):3–20CrossRefGoogle Scholar
  35. Koumoundouros G, Kouttouki S, Georgakopoulou E, Papadakis I, Maingot E, Kaspiris P, Kiriakou Y, Georgiou G, Divanach P, Kentouri M, Mylonas C (2005) Ontogeny of shi drum Umbrina cirrosa (Linnaeus 1758). Aquac Res 36:1265–1272CrossRefGoogle Scholar
  36. López-Albors O, Gil F, Ramírez Zarzosa G, Vázquez JM, Latorre R, García Alcázar A, Arencibia A, Moreno F (1998) Muscle development in Gilthead Sea Bream (Sparus aurata, L.) and sea bass (Dicentrarchus labrax, L.): further histochemical and ultrastructural aspects. Anat Histol Embryol 27:223–229CrossRefPubMedGoogle Scholar
  37. López-Albors O, Ayala MD, Gil F, García Alcazar A, Abellán E, Latorre R, Ramírez Zarzosa G, Vázquez JM (2003) Early temperature effects on muscle growth dynamics and histochemical profile of muscle fibre of sea bass Dicentrarchus labrax L., during larval and juvenile stages. Aquaculture 220:385–406CrossRefGoogle Scholar
  38. López-Albors O, Arizcun M, Abellán E, Blanco A, Ayala MD, Pastor LM, Latorre R (2010) Posthatch development of the axial musculature of the common dentex Dentex dentex, L (Teleostei). Histol Histopathol 25:1557–1571PubMedGoogle Scholar
  39. Marschallinger J, Obermayer A, Sänger AM, Stoiber W, Steinbacher P (2009) Postembryonic fast muscle growth of teleost fish depends upon a nonuniformly distributed population of mitotically active pax7 + precursor cells. Dev Dyn 238:2442–2448CrossRefPubMedGoogle Scholar
  40. Martell DJ, Kieffer JD (2007) Persistent effects of incubation temperature on muscle development in larval haddock (Melanogrammus aeglefinus L.). J Exp Biol 210:1170–1182CrossRefPubMedGoogle Scholar
  41. Migaud H, Davie A, Taylor JFT (2010) Current knowledge on the photoneuroendocrine regulation of reproduction in temperate fish species. J Fish Biol 7:27–68CrossRefGoogle Scholar
  42. Mylonas C, Georgiu G, Stephanou D, Atack T, Afonso A, Yohar Y (2004) Preliminary data on the reproductive biology and hatchery production of the shi drum (Umbrina cirrosa) in Cyprus. CIHEAM-Options Mediterranèennes, pp 303–312.
  43. Olivera-Martínez I, Thelu J, Dhouailly D (2004) Molecular mechanisms controlling dorsal dermis generation from the somitic dermomyotome. Int J Dev Biol 48:93–101CrossRefPubMedGoogle Scholar
  44. Patruno MG, Radaelli G, Mascarello F, Candia Carnevali MD (1998) Muscle growth in response to changing demands of functions in the teleost Sparus aurata (L.) during development from hatching to juvenile. Anat Embryol 198:487–504CrossRefPubMedGoogle Scholar
  45. Rescan PY (2008) New insights into skeletal muscle development and growth in teleost fishes. J Exp Zool B Mol Dev Evol 310:541–548CrossRefPubMedGoogle Scholar
  46. Ronzani Cerqueira V, Chatain B, Lavens P, Jaspers E, Ollevier F (1991) Photoperiodic effects on the growth and feeding rhythm of European sea bass, Dicentrarchus labrax, larvae in intensive rearing. Larvi’91 Special Publ Eur Aquacult Soc 15: 304–306Google Scholar
  47. Rowlerson A, Scapolo PA, Mascarello F, Carpene E, Veggetti A (1985) Comparative study of myosin present in the lateral muscle of some fish: species variations in myosin isoforms and their distribution in red, pink and white muscle. J Muscle Res Cell Motil 6:601–640CrossRefPubMedGoogle Scholar
  48. Rowlerson A, Mascarello A, Radaelli G, Veggetti A (1995) Differentiation and growth of muscle in the fish Sparus aurata (L.) II. Hyperplastic and hypertrophic growth of lateral muscle from hatching to adult. J Muscle Res Cell Motil 16:223–236CrossRefPubMedGoogle Scholar
  49. Scapolo PA, Veggetti A, Mascarello F, Romanello MG (1988) Developmental transitions of myosin isoforms and organisation of the lateral muscle in the teleost Dicentrarchus labrax (L.). Anat Embryol 178:287–295CrossRefPubMedGoogle Scholar
  50. Simensen LM, Jonassen TM, Imsland AK, Stefansson SO (2000) Photoperiod regulation of growth of juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 190:119–128CrossRefGoogle Scholar
  51. Solbakken JS, Pittman K (2004) Photoperiodic modulation of metamorphosis in Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 232:613–625CrossRefGoogle Scholar
  52. Steinbacher P, Haslett JR, Six M, Gollmann HP, Sänger AM, Stoiber W (2006) Phases of myogenic cell activation and possible role of dermomyotome cells in teleost muscle formation. Dev Dyn 235:3132–3143CrossRefPubMedGoogle Scholar
  53. Steinbacher P, Haslett JR, Obermayer A, Marschallinger J, Bauer HC, Sänger AM, Stoiber W (2007) MyoD and Myogenin expression during myogenesis phases in brown trout: a precocious onset of mosaic hyperplasia is a prerequisite for fast somatic growth. Dev Dyn 236:1106–1114CrossRefPubMedGoogle Scholar
  54. Steinbacher P, Stadlmayr V, Marschallinger J, Saänger AM, Stoiber W (2008) Lateral fast muscle fibers originate from the posterior lip of the teleost dermomyotome. Dev Dyn 237(11):3233–3239CrossRefPubMedGoogle Scholar
  55. Stellabotte F, Devoto SH (2007) The teleost dermomyotome. Dev Dyn 236:2432–2443CrossRefPubMedGoogle Scholar
  56. Stellabotte F, Dobbs-McAuliffe B, Fernandez DA, Feng X, Devoto SH (2007) Dynamic somite cell rearrangements lead to distinct waves of myotome growth. Development 134:1253–1257CrossRefPubMedGoogle Scholar
  57. Stoiber W, Haslett JR, Goldschmid A, Sänger AM (1998) Patterns of superficial fibre formation in the European pearl-fish (Rutilus frisii meidingeri) provide a general template for slow muscle development in teleost fish. Anat Embryol (Berl) 197:485–496CrossRefGoogle Scholar
  58. Usher ML, Stickland NC, Thorpe JE (1994) Muscle development in Atlantic salmon (Salmo salar) embryos and the effect of temperature on muscle cellularity. J Fish Biol 44:953–964CrossRefGoogle Scholar
  59. Veggetti A, Mascarello F, Scapolo PA, Rowlerson A (1990) Hyperplastic and hypertrophic growth of lateral muscle in Dicentrarchus labrax (L.): an ultrastructural and morphometric study. Anat Embryol 182:1–10CrossRefPubMedGoogle Scholar
  60. Villamizar N, Blanco-Vives B, Migaud H, Davie A, Carboni S, Sánchez-Vázquez FJ (2011) Effects of light during early larval development of some aquacultured teleosts: a review. Aquaculture 315:86–94CrossRefGoogle Scholar
  61. Wanson JC, Drochman P (1968) Epoxi technique inclusion for electron microscopy. Cell Biol 38:130CrossRefGoogle Scholar
  62. Waterman RE (1969) Developmental of the lateral musculature in the teleost, Brachydanio rerio: a fine structural study. Am J Anat 125:457–494CrossRefPubMedGoogle Scholar
  63. Weatherley AH, Gill HS, Lobo AF (1988) Recruitment and maximal diameter of axial muscle fibres in teleosts and their relationship to somatic growth and ultimate size. J Fish Biol 33:851–859CrossRefGoogle Scholar
  64. Wootton RJ (2011) Growth: environmental effects. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment, vol 3. Academic Press, San Diego, pp 1629–1632CrossRefGoogle Scholar
  65. Zaiss MM, Papadakis IE, Maingot E, Divanach P, Mylonas CC (2006) Ontogeny of the digestive tract in shi drum (Umbrina cirrosa L.) reared using the mesocosm larval rearing system. Aquaculture 260:357–368CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Maria D. Ayala
    • 1
    Email author
  • Emilia Abellán
    • 2
  • Marta Arizcun
    • 2
  • Alicia García-Alcázar
    • 2
  • F. Navarro
    • 1
  • Alfonso Blanco
    • 3
  • Octavio M. López-Albors
    • 1
  1. 1.Department Anatomía y Anatomía Patológica Comparadas, Anatomía y Embriología Veterinaria, Facultad de VeterinariaUniversidad de MurciaMurciaSpain
  2. 2.Instituto Español de Oceanografía (Centro Oceanográfico de Murcia) MazarrónSpain
  3. 3.Department Anatomía y Anatomía Patológica Comparadas, Facultad de VeterinariaUniversidad de CórdobaCórdobaSpain

Personalised recommendations