Skip to main content
Log in

Cadmium exposure affects the expression of genes involved in skeletogenesis and stress response in gilthead sea bream larvae

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Gilthead sea bream larvae (Sparus aurata) aged 47 days post hatching (dph) (11.6–12.8 mg in wet weight) were exposed to several sublethal concentrations of Cd2+ (0.1, 5 and 10 mg/L) during 6 days in order to investigate the effects of this heavy metal on the expression of selected genes involved in detoxification (metallothionein-mt, glutathione peroxidase 1-gpx1), stress response (heat shock protein 70-hsp70, tumour necrosis factor α-tnfα) and ossification (osteocalcin-oc) processes. For this purpose, specimens of 47 dph were exposed first for 72 h from 0.1 to 20 mg/L of Cd2+ in order to evaluate the median lethal concentration (LC50) for this metal, which was determined at 15.32 mg/L. Considering the results regarding the relative transcript levels of gpx1 and hsp70, Cd2+ at any of the tested levels (0.1, 5 and 10 mg/L) did not induce oxidative stress in gilthead sea bream larvae, whereas relative transcript levels of mt were increased at 5 and 10 mg/L of Cd2+ probably to detoxify this metal excess. Relative transcript levels of tnfα were not level dependent and were down-regulated in larvae exposed to 5 and 10 mg/L of Cd2+. At those concentrations, transcript levels of oc were down-regulated suggesting a disruption in bone mineralization. Results from this study provided insights in some molecular mechanisms underlying Cd2+-induced toxicity in fish at early stages of development. This is the first study to show that cadmium contamination can depress oc expression in teleosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Apostolaki M, Armaka M, Victoratos P, Kollias G (2010) Cellular mechanisms of t function in models of inflammation and autoimmunity. In: Kollias G, Sfikakis PP (eds) TNF pathophysiology: molecular and cellular mechanisms. Karger, Basel, pp 1–26

    Chapter  Google Scholar 

  • Banni M, Dondero F, Jebali J, Guerbej H, Boussetta H, Viarengo A (2007) Assessment of heavy metal contamination using real time PCR analysis of mussel metallothionein mt10 and mt20 expression: a validation along the Tunisian coasts. Biomarkers 12:369–383

    Article  PubMed  CAS  Google Scholar 

  • Basha PS, Siraj P, Rani S, Usha A (2003) Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicol Environ Safe 56:218–221. doi:10.1016/S0147-6513(03)00028-9

    Article  CAS  Google Scholar 

  • Benson WH, Baer KN, Watson CF (1990) Metallothionein as biomarker of environmental metal contamination: species dependent effects. In: McCarthy JF, Shugart LR (eds) Biomarkers of environmental contamination. Lews, FL, pp 255–265

    Google Scholar 

  • Beyersmann D (2002) Effects of carcinogenic metals on gene expression. Toxicol Lett 127:63–68. doi:10.1016/S0378-4274(01)00484-2

    Article  PubMed  CAS  Google Scholar 

  • Birceanu O, Chowdhury MJ, Gillis PL, McGeer JC, Wood CM, Wilkie MP (2008) Modes of metal toxicity and impaired branchial ionoregulation in rainbow trout exposed to mixtures of Pb and Cd2+ in soft water. Aquat Toxicol 89:222–231. doi:10.1016/j.aquatox.2008.07.007

    Article  PubMed  CAS  Google Scholar 

  • Blechinger SR, Warren JT Jr, Kuwada JY, Krone PH (2002) Developmental toxicology of cadmium in living embryos of a stable transgenic zebrafish line. Environ Health Perspect 110:1041–1046. doi:10.1289/ehp.021101041

    Article  PubMed  CAS  Google Scholar 

  • Blechinger SR, Kusch RC, Haugo K, Matz C, Chivers DP, Krone PH (2007) Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish. Toxicol Appl Pharmacol 224:72–80. doi:10.1016/j.taap.2007.06.025

    Article  PubMed  CAS  Google Scholar 

  • Bodo M, Balloni S, Lumare E, Bacci M, Calvitti M, Dell’Omo M, Murgia N, Marinucci L (2010) Effects of sub-toxic cadmium concentrations on bone gene expression program: results of an in vitro study. Toxicol In Vitro 24:1670–1680. doi:10.1016/j.tiv.2010.05.020

    Article  PubMed  CAS  Google Scholar 

  • Bouraoui Z, Banni M, Ghedira J, Clerandeau C, Guerbej H, Narbonne JF, Boussetta H (2008) Acute effects of cadmium on liver phase I and phase II enzymes and metallothionein accumulation on sea bream Sparus aurata. Fish Physiol Biochem 34:201–217. doi:10.1007/s10695-007-9177-y

    Article  PubMed  CAS  Google Scholar 

  • Cancela ML, Williamson MK, Price PA (1995) Amino acid sequence of bone Gla protein from the African clawed toad Xenopus laevis and the fish Sparus aurata. Int J Pept Protein Res 46:419–423. doi:10.1111/j.1399-3011.1995.tb01076.x

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Huang W, Shan X, Xiao Z, Wang Q, Dou S (2009) Cadmium toxicity to embryonic—larval development and survival in red sea bream Pagrus major. Ecotoxicol Environ Saf 72:1966–1974. doi:10.1016/j.ecoenv.2009.06.002

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Zhou Q, Liu S, Xiu Z (2011) Acute toxicity, biochemical and gene expression responses of the earthworm Eisenia fetida exposed to polycyclic musks. Chemosphere 83:1147–1154. doi:10.1016/j.chemosphere.2011.01.006

    Article  PubMed  CAS  Google Scholar 

  • Cheng SH, Wai AWK, So CH, Wu RSS (2000) Cellular and molecular basis of cadmium-induced deformities in zebrafish embryos. Environ Toxicol Chem 19:3024–3031. doi:10.1002/etc.5620191223

    Article  CAS  Google Scholar 

  • Choi CY, An KW, Nelson ER, Habibi HR (2007) Cadmium affects the expression of metallothionein (MT) and glutathione peroxidase (GPX) mRNA in goldfish, Carassius auratus. Comp Biochem Physiol 145C:595–600. doi:10.1016/j.cbpc.2007.02.007

    CAS  Google Scholar 

  • Cousinou M, Nilsen UB, Lopez-Barea J, Dorado G (2000) New methods to use fish cytochrome P4501A to assess marine organic pollutants. Sci Total Environ 247:213–225. doi:10.1016/S0048-9697(99)00492-1

    Article  PubMed  CAS  Google Scholar 

  • Cusimano RF, Brakke DF, Champman GA (1986) Effects of pH on the toxicities of cadmium, copper and zinc to steelhead trout (Salmo gairdneri). Can J Fish Aquat Sci 43:1497–1503. doi:10.1139/f86-187

    Article  CAS  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Ravindran Nair A, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940. doi:10.1007/s10534-010-9329-x

    Article  PubMed  CAS  Google Scholar 

  • Darias MJ, Chow O, Cahu C, Zambonino-Infante JL, Mazurais D (2010) Double staining protocol for developing European sea bass (Dicentrarchus labrax) larvae. J Appl Ichthyol 26:280–285. doi:10.1111/j.1439-0426.2010.01421.x

    Article  Google Scholar 

  • Darias MJ, Mazurais D, Koumoundouros G, Le Gall MM, Huelvan C, Desbruyeres E, Quazuguel P, Cahu CL, Zambonino-Infante JL (2011) Imbalanced dietary ascorbic acid alters molecular pathways involved in skeletogenesis of developing European sea bass (Dicentrarchus labrax). Comp Biochem Physiol 159A:46–55. doi:10.1016/j.cbpa.2011.01.013

    CAS  Google Scholar 

  • Darias MJ, Boglino A, Manchado M, Ortiz-Delgado JB, Estévez A, Andree KB, Gisbert E (2012) Molecular regulation of both dietary vitamin A and fatty acid absorption and metabolism associated with larval morphogenesis of Senegalese sole (Solea senegalensis). Comp Biochem Physiol 161A:130–139. doi:10.1016/j.cbpa.2011.10.001

    Google Scholar 

  • Faustino M, Power DM (1998) Development of osteological structures in the sea bream: vertebral column and caudal fin complex. J Fish Biol 52:11–22. doi:10.1111/j.1095-8649.1998.tb01548.x

    Article  Google Scholar 

  • Fernández I, Hontoria F, Ortiz-Delgado JB, Kotzamanis Y, Estévez A, Zambonino-Infante JL, Gisbert E (2008) Larval performance and skeletal deformities in farmed gilthead sea bream (Sparus aurata) fed with graded levels of vitamin A enriched rotifers (Brachionus plicatilis). Aquaculture 283:102–115. doi:10.1016/j.aquaculture.2008.06.037

    Article  Google Scholar 

  • Fernández I, Darias M, Andree KB, Mazurais D, Zambonino-Infante JL, Gisbert E (2011) Coordinated gene expression during gilthead sea bream skeletogenesis and its disruption by nutritional hypervitaminosis A. BMC Dev Biol 11:7. doi:10.1186/1471-213X-11-7

    Article  PubMed  Google Scholar 

  • Ferrari L, Eissa BL, Salibián A (2012) Energy balance of juvenile Cyprinus carpio after a short-term exposure to sublethal water-borne cadmium. Fish Physiol Biochem 37:853–862. doi:10.1007/s10695-011-9483-2

    Article  Google Scholar 

  • Forlenza M, Magez S, Scharsack JP, Westphal A, Savelkoul HFJ, Wiegertjes GF (2009) Receptor-mediated and lectin-like activities of carp (Cyprinus carpio) TNF-α. J Immunol 183:5319–5332. doi:10.4049/jimmunol.0901780

    Article  PubMed  CAS  Google Scholar 

  • Funk AE, Day FA, Brady FO (1987) Displacement of zinc and copper from copper induced metallothionein by cadmium and by mercury: in vivo and ex vivo studies. Comp Biochem Physiol 86C:1–6. doi:10.1016/0742-8413(87)90133-2

    CAS  Google Scholar 

  • George S, Gubbins M, MacIntosh A, Reynolds W, Sabine V, Scott A, Thain J (2004) A comparison of pollutant biomarker responses with transcriptional responses in European flounders (Platicthys flesus) subjected to estuarine pollution. Mar Environ Res 58:571–575. doi:10.1016/j.marenvres.2004.03.047

    Article  PubMed  CAS  Google Scholar 

  • Hallare AV, Schirling M, Luckenbach T, Kohler HR, Triebskorn R (2005) Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J Therm Biol 30:7–17. doi:10.1016/j.jtherbio.2004.06.002

    Article  CAS  Google Scholar 

  • Hansen BH, Romma S, Garmo OA, Olsvik PA, Andersen RA (2006) Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp Biochem Physiol 143C:263–274. doi:10.1016/j.cbpc.2006.02.010

    CAS  Google Scholar 

  • Harper DD, Farag AM, Brumbaugh WG (2008) Effects of acclimation on the toxicity of stream water contaminated with zinc and cadmium to juvenile cutthroat trout. Arch Environ Contam Toxicol 54:697–704

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson TH, Williams TD, Eales GJ (1994) Toxicity of cadmium, hexavalent chromium and copper to marine fish larvae (Cyprinodon variegatus) and copepods (Tisbe battagliai). Mar Environ Res 38:275–290. doi:10.1007/s00244-007-9063-8

    Article  CAS  Google Scholar 

  • Inoue K, Takano H, Shimada A, Satoh M (2009) Metallothionein as an anti-inflammatory mediator. Mediat Inflamm 2009:101–659. doi:10.1155/2009/101659

    Google Scholar 

  • Kessabi K, Kerkeni A, Saïd K, Messaoudi I (2009) Involvement of Cd2+ bioaccumulation in spinal deformities occurrence in natural populations of Mediterranean killifish. Biol Trace Elem Res 128:72–81. doi:10.1007/s12011-008-8255-z

    Article  PubMed  CAS  Google Scholar 

  • Kim SG, Jee JH, Kang JC (2004) Cadmium accumulation and elimination in tissues of juvenile olive flounder, Paralichthys olivaceus after subchronic cadmium exposure. Environ Pollut 127:117–123. doi:1016/S0269-7491(03)00254-9

    Article  PubMed  CAS  Google Scholar 

  • Kwong RWM, Andrés JA, Niyogi S (2011) Effects of dietary cadmium exposure on tissue-specific cadmium accumulation, iron status and expression of iron-handling and stress-inducible genes in rainbow trout: influence of elevated dietary iron. Aquat Toxicol 102:1–9. doi:10.1016/j.aquatox.2010.12.010

    Article  PubMed  CAS  Google Scholar 

  • Lam LK, Ko PW, Wong YK-Y, Chan KM (1998) Metal toxicity and metallothionein gene expression studies in common carp and tilapia. Mar Environ Res 46:563–566. doi:10.1016/S0141-1136(98)00008-7

    Article  CAS  Google Scholar 

  • Lange A, Ausseil O, Segner H (2002) Alterations of tissue glutathione levels and metallothionein mRNA in rainbow trout during single and combined exposure to cadmium and zinc. Comp Biochem Physiol 131C:231–243. doi:10.1016/S1532-0456(02)00010-8

    CAS  Google Scholar 

  • Lie KK, Moren M (2012) Retinoic acid induces two osteocalcin isoforms and inhibits markers of osteoclast activity in Atlantic cod (Gadus morhua) ex vivo cultured craniofacial tissues. Comp Biochem Physiol 161A:174–184. doi:10.1016/j.cbpa.2011.10.023

    Google Scholar 

  • Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238:209–214. doi:10.1016/j.taap.2009.01.029

    Article  PubMed  CAS  Google Scholar 

  • Luckenbach T, Kilian M, Triebskorn R, Oberemm A (2001) Fish early life stage tests as a tool to assess embryotoxic potentials in small streams. J Aquat Ecosyst Stress Recover (formerly J Aquat Ecosyst Health) 8:355–370

    Article  CAS  Google Scholar 

  • Malekpouri P, Moshtaghie AA, Kazemian M, Soltani M (2011) Protective effect of zinc on related parameters to bone metabolism in common carp fish (Cyprinus carpio L.) intoxified with cadmium. Fish Physiol Biochem 37:187–196. doi:10.1007/s10695-010-9430-7

    Article  PubMed  CAS  Google Scholar 

  • Messaoudi I, Deli T, Kessabi K, Barhoumi S, Kerkeni A, Saïd K (2009) Association of spinal deformities with heavy metal bioaccumulation in natural populations of grass goby, Zosterisessor ophiocephalus Pallas, 1811 from the Gulf of Gabès (Tunisia). Environ Monit Assess 156:551–560. doi:10.1007/s10661-008-0504-2

    Article  PubMed  CAS  Google Scholar 

  • Middaugh DP, Dean JM (1977) Comparative sensitivity of eggs, larvae and adults of the estuarine teleosts, Fundulus heteroclitus and Menidia menidia to cadmium. Bull Environ Contam Toxicol 17:645–652

    Article  PubMed  CAS  Google Scholar 

  • Mitter K, Kotoulas G, Magoulas A, Mulero V, Sepulcre P, Figueras A, Novoa B, Sarropoulou E (2009) Evaluation of candidate reference genes for QPCR during ontogenesis and of immune-relevant tissues of European seabass (Dicentrarchus labrax). Comp Biochem Physiol 153B:340–347. doi:10.1016/j.cbpb.2009.04.009

    CAS  Google Scholar 

  • Muley DV, Kamble GB, Bhilave MP (2000) Effect of heavy metals on nucleic acids in Cyprinus carpio. J Environ Biol 21:367–370

    CAS  Google Scholar 

  • Nadeau D, Corneau S, Plante I, Morrow G, Tanguay RM (2001) Evaluation for Hsp70 as a biomarker of effect of pollutants on the earthworm Lumbricus terrestris. Cell Stress Chaperon 6:153–163

    Article  CAS  Google Scholar 

  • Neve A, Corrado A, Cantatore FP (2011) Osteoblast physiology in normal and pathological conditions. Cell Tiss Res 343:289–302. doi:10.1007/s00441-010-1086-1

    Article  CAS  Google Scholar 

  • Pandey S, Parvez S, Sayeed I, Haque R, Bin-Hafeez B, Raisuddin S (2003) Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallagoattu (Bl. & Schn.). Sci Total Environ 309:105–115. doi:10.1016/S0048-9697(03)00006-8

    Article  PubMed  CAS  Google Scholar 

  • Paul-Pont I, Gonzalez P, Baudrimont M, Nilia H, de Montaudouin X (2010) Short-term metallothionein inductions in the edible cockle Cerastoderma edule after cadmium or mercury exposure: discrepancy between mRNA and protein responses. Aquat Toxicol 97:260–267. doi:10.1016/j.aquatox.2009.12.007

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36. doi:10.1093/nar/30.9.e36

    Article  PubMed  Google Scholar 

  • Pinto JP, Conceição N, Gavaia PJ, Cancela ML (2003) Matrix Gla protein gene expression and protein accumulation colocalize with cartilage distribution during development of the teleost fish Sparus aurata. Bone 32:201–210. doi:10.1016/S8756-3282(02)00981-X

    Article  PubMed  CAS  Google Scholar 

  • Pohl CH (1990) Skeletal deformities and trace metal contents of European smelt, Osmerus eperlanus, in the Elbe Estuary. Meeresforschung/Rep Mar Res 33:76–89

    Google Scholar 

  • Rebelo MF, Pfeiffer WC, Da Silva H Jr, Moraes MO (2003) Cloning and detection of metallothionein mRNA by RT-PCR in mangrove oysters (Crassostrea rhizophorae). Aquat Toxicol 64:359–362. doi:10.1016/S0166-445X(03)00059-6

    Article  PubMed  CAS  Google Scholar 

  • Regunathan A, Glesne DA, Wilson AK, Song J, Nicolae D, Flores T, Bhattacharyya MH (2003) Microarray analysis of changes in bone cell gene expression early after cadmium gavage in mice. Toxicol Appl Pharmacol 191:272–293. doi:10.1016/S0041-008X(03)00163-7

    Article  PubMed  CAS  Google Scholar 

  • Sassi A, Annabi A, Kessabi K, Kerkeni A, Saïd K (2010) Influence of high temperature on cadmium-induced skeletal deformities in juvenile mosquitofish (Gambusia affinis). Fish Physiol Biochem 36:403–409. doi:10.1007/s10695-009-9307-9

    Article  PubMed  CAS  Google Scholar 

  • Shazili NAM (1995) Effects of salinity and pre-exposure on acute cadmium toxicity to seabass, Lates calcarifer. Bull Environ Contam Toxicol 54:22–28. doi:10.1007/BF00196265

    Article  PubMed  CAS  Google Scholar 

  • Solé-Rovira M, Fernández-Díaz C, Cañavate JP, Blasco J (2005) Effects on metallothionein levels and other stress defences in Senegal sole larvae exposed to cadmium. Bull Environ Contam Toxicol 74:597–603. doi:10.1007/s00128-005-0625-z

    Article  PubMed  Google Scholar 

  • Sovenyi J, Szakolczai J (1993) Studies on the toxic and immunosuppressive effects of cadmium on the common carp. Acta Vet Hung 41:415–426

    PubMed  CAS  Google Scholar 

  • Suresh A, Sivaramakrishna B, Radhakrishna K (1993) Patterns of cadmium accumulation in the organs of fry and fingerlings of freshwater fish Cyprinus carpio following cadmium exposure. Chemosphere 26:945–953. doi:10.1016/0045-6535(93)90369-G

    Article  CAS  Google Scholar 

  • Świergosz-Kowalewska R, Bednarska A, Kafel A (2006) Glutathione levels and enzyme activity in the tissues of bank vole Clethrionomys glareolus chronically exposed to a mixture of metal contaminants. Chemosphere 65:963–974. doi:10.1016/j.chemosphere.2006.03.040

    Article  PubMed  Google Scholar 

  • Uriu K, Morimoto I, Kai K, Okazaki Y, Okada Y, Qie YL, Okimoto N, Kaizu K, Nakamura T, Eto S (2000) Uncoupling between bone formation and resorption in ovariectomized rats with chronic cadmium exposure. Toxicol Appl Pharmacol 164:264–272. doi:10.1006/taap.2000.8908

    Article  PubMed  CAS  Google Scholar 

  • USEPA (1985) Ambient water quality criteria for cadmium-1984, EPA 440/5-84-032. Office of Water Regulations and Standards, Criteria and Standards Division, USEPA, Washington, DC

    Google Scholar 

  • Witeska M, Jezierska B, Wolnieki J (2006) Respiratory and hematological response of tench, Tinca tinca (L.) to a short-term cadmium exposure. Aquac Int 14:141–152. doi:10.1007/s10499-005-9020-3

    Article  CAS  Google Scholar 

  • Yamashita M, Yabu T, Ojima N (2010) Stress protein HSP70 in fish. Aqua Biosci Monogr 3:111–141. doi:10.5047/absm.2010.00304.0111

    Article  Google Scholar 

  • Zar JH (1974) Biostatistical analysis. Prentice Hall, NJ, p 662

    Google Scholar 

Download references

Acknowledgments

Authors would like to express their gratitude to S. Molas, M. Matas and M. Monllaó for fish larval rearing, A. Estévez for generously donating the fish for experimental purposes and M. Banni for providing help in statistics. This work was funded by the Ministry of Science and Innovation (MICIIN, projects: AGL2005-02478, AGL2008-03897-C04-01) and the Tunisian Ministry of Higher Education, Scientific Research and Technology. M. J. Darias was supported by a Juan de la Cierva post-doctoral contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Sassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sassi, A., Darias, M.J., Said, K. et al. Cadmium exposure affects the expression of genes involved in skeletogenesis and stress response in gilthead sea bream larvae. Fish Physiol Biochem 39, 649–659 (2013). https://doi.org/10.1007/s10695-012-9727-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-012-9727-9

Keywords

Navigation