Fish Physiology and Biochemistry

, Volume 39, Issue 3, pp 489–501 | Cite as

Biochemical and histological changes in the liver tissue of rainbow trout (Oncorhynchus mykiss) exposed to sub-lethal concentrations of diazinon

  • Mahdi Banaee
  • Antoni Sureda
  • Ali Reza Mirvaghefi
  • Kamal Ahmadi
Article

Abstract

The organophosphate insecticide diazinon is widely used to control pest in Iran. The purpose of the present study was to investigate the antioxidant and histopathological changes in the liver tissue of rainbow trout (Oncorhynchus mykiss) exposed to 0.1 and 0.2 mg/L of a commercial formula of diazinon for a period of 28 days. Antioxidant enzyme activities—catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase—were determined after 7, 14 and 28 days of exposure. Histopathological analyses were performed at the 28th day. All antioxidant enzymes were induced after 7 days of diazinon treatment in both concentrations of diazinon. Catalase and superoxide dismutase maintained elevated activities during all the treatment period. Glutathione peroxidase activity returned to the control values at the 14th day, decreasing to values below control at the 28th day in both diazinon concentrations. Glutathione reductase maintained increased activities at the 14th day in the 0.1 mg/L diazinon, decreasing to control values at the 28th day. In the 0.2 mg/L group, the activity returned to control values at the 14th and decreased below the control at the 28th day. Total antioxidant capacity of hepatocytes significantly decreased in fishes exposed to diazinon during all experimental periods. Hypertrophy of hepatocytes, vacuolization of cell cytoplasm and hepatocyte cloudy swelling were observed in the liver tissue of fish exposed to both concentrations of diazinon. The results showed that diazinon altered the activity of antioxidant enzymes and the cellular total antioxidant capacity inducing oxidative stress and cellular damage in hepatocytes evidenced by histopathological analysis.

Keywords

Diazinon Rainbow trout Total antioxidant Antioxidant enzyme Liver Histopathology 

References

  1. Achuba FI, Osakwe SA (2003) Petroleum-induced free radical toxicity in African catfish (Clarias gariepinus). Fish Physiol Biochem 29:97–103. doi:10.1023/B:FISH.000035905.14420.eb CrossRefGoogle Scholar
  2. Aebi H (1984) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 671–684Google Scholar
  3. Albanis T, Hela D, Sakellarides T, Konstantinou I (1998) Monitoring of pesticide residues and their metabolites in surface and underground waters of Imathia (N. Greece) by means of solid-phase extraction disks and gas chromatography. J Chromatogr A 823:59–71. doi:10.1016/S0021-9673(98)00304-5 PubMedCrossRefGoogle Scholar
  4. Allender WJ, Britt AG (1994) Analysis of liquid diazinon formulations and breakdown products: an Australia-wide survey. Bull Environ Contam Toxicol 53:902–906. doi:10.1007/BF00196222 PubMedCrossRefGoogle Scholar
  5. Arjmandi R, Tavakol M, Shayeghi M (2010) Determination of organophosphorus insecticide residues in the rice paddies. Int J Environ Sci Technol 7(1):175–182Google Scholar
  6. Aydın R, Köprücü K (2005) Acute toxicity of diazinon on the common carp (Cyprinus carpio L.) embryos and larvae. Pestic Biochem Physiol 82:220–225. doi:10.1016/j.pestbp.2005.03.001 CrossRefGoogle Scholar
  7. Bagheri F (2007) Study of pesticide residues (Diazinon, Azinphosmethyl) in the rivers of Golestan province (Gorgan Roud and Gharehsou), M.Sc. thesis, Tehran University of Medical Science. Tehran, Iran, pp 1–125Google Scholar
  8. Bailey H, Deanovic L, Reyes E, Kimball T, Larson K, Cortright K, Connor V, Hinton D (2000) Diazinon and chlorpyrifos in urban waterways in northern California, USA. Environ Toxicol Chem 19:82–87. doi:10.1002/etc.5620190109 CrossRefGoogle Scholar
  9. Banaee M (2012) Adverse effect of insecticides on various aspects of fish’s biology and physiology. In: Sonia Soloneski, Marcelo Larramendy (eds) Insecticides—basic and other applications book. InTech, Chapter 6, pp 101–126Google Scholar
  10. Banaee M, Mirvagefei AR, Rafei GR, Majazi Amiri B (2008) Effect of sub-lethal diazinon concentrations on blood plasma biochemistry. Int J Environ Res 2:189–198Google Scholar
  11. Banaee M, Sureda A, Mirvaghefi AR, Ahmadi K (2011) Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pestic Biochem Physiol 99:1–6. doi:10.1016/j.pestbp.2010.09.001 CrossRefGoogle Scholar
  12. Banks KE, Hunter DH, Wachal DJ (2005) Diazinon in surface waters before and after a federally-mandated ban. Sci Total Environ 350:86–93. doi:10.1016/j.scitotenv.2005.01.017 PubMedCrossRefGoogle Scholar
  13. Box A, Sureda A, Galgani F, Pons A, Deudero S (2007) Assessment of environmental pollution at Balearic Islands applying oxidative stress biomarkers in the mussel Mytilus galloprovincialis. Comp Biochem Physiol C 146:531–539. doi:10.1016/j.cbpc.2007.06.006 Google Scholar
  14. Bulletin of Agriculture Ministry of Iran (2008) Annual report of performance of the Ministry of Agriculture of Iran (2006–2007). pp 1–301Google Scholar
  15. Cattaneo R, Loro VL, Spanevello R, Silveira FA, Luz L, Miron DS, Fonseca MB, Moraes BS, Clasen B (2008) Metabolic and histological parameters of silver catfish (Rhamdia quelen) exposed to commercial formulation of 2,4-dichlorophenoxiacetic acid (2,4-D) herbicide. Pestic Biochem Physiol 92:133–137. doi:10.1016/j.pestbp.2008.07.004 CrossRefGoogle Scholar
  16. Cengiz EI, Unlu E (2006) Sublethal effects of commercial deltamethrin on the structure of the gill, liver and gut tissues of mosquitofish, Gambusia affinis: a microscopic study. Environ Toxicol Pharmacol 21:246–253. doi:10.1016/j.etap.2005.08.005 PubMedCrossRefGoogle Scholar
  17. Cong VN, Phuong NT, Bayley M (2008) Brain cholinesterase response in the snakehead fish (Channa striata) after field exposure to diazinon. Ecotoxicol Environ Saf 71:314–318. doi:10.1016/j.ecoenv.2008.04.005 CrossRefGoogle Scholar
  18. de Menezes CC, Loro VL, da Fonseca MB, Cattaneo R, Pretto A, Miron DS, Santi A (2011) Oxidative parameters of Rhamdia quelen in response to commercial herbicide containing clomazone and recovery pattern. Pestic Biochem Physiol 100:145–150. doi:10.1016/j.pestbp.2011.03.002 CrossRefGoogle Scholar
  19. Dubus I, Hollis J, Brown C (2000) Pesticides in rainfall in Europe. Environ Pollut 110:331–344 (PII: S0269-7491(99)00295-X)PubMedCrossRefGoogle Scholar
  20. U.S. EPA (2005) Aquatic life ambient water quality criteria Diazinon Final. Office of Science and Technology Washington, DC. (CAS Registry Number 333-41-5) 1-85Google Scholar
  21. Ferreira D, da Motta AC, Kreutz LC, Toni C, Barcellos LJG, Loro VL (2010) Assessment of oxidative stress in Rhamdia quelen exposed to agrichemicals. Chemosphere 79:914–921. doi:10.1016/j.chemosphere.2010.03.024 PubMedCrossRefGoogle Scholar
  22. Franco JL, Posser T, Mattos JJ, Sánchez-Chardi A, Trevisan R, Oliveira CS, Carvalho PSM, Leal RB, Marques MRF, Bainy ACD, Dafre AL (2008) Biochemical alterations in juvenile carp (Cyprinus carpio) exposed to zinc: glutathione reductase as a target. Mar Environ Res 66:88–89. doi:10.1016/j.marenvres.2008.02.031 PubMedCrossRefGoogle Scholar
  23. Fujii Y, Asaka S (1982) Metabolism of diazinon and diazoxon in fish liver preparations. Bull Environ Contam Toxicol 29:455–460PubMedCrossRefGoogle Scholar
  24. Garcia S, Ake C, Clement B, Huebuer H, Donnelly K, Shalat S (2001) Initial results of environmental monitoring in the Texas Rio Grande valley. Environ Int 26:465–474. doi:10.1016/S0160-4120(01)00027-7 PubMedCrossRefGoogle Scholar
  25. Ghassempour A, Mohammadkhah A, Najafie M, Rajabzadeh M (2002) Monitoring of the pesticide diazinon in soil, stem and surface water of rice fields. Anal Sci 18(7):779–783. doi:10.2116/analsci.18.779 PubMedCrossRefGoogle Scholar
  26. Girón-Pérez MI, Santerre A, Gonzalez-Jaime F, Casas-Solis J, Hernández-Coronado M, Peregrina-Sandoval J, Takemura A, Zaitseva G (2007) Immunotoxicity and hepatic function evaluation in Nile tilapia (Oreochromis niloticus) exposed to diazinon. Fish Shellfish Immunol 23:760–769PubMedCrossRefGoogle Scholar
  27. Hai DQ, Varga SI, Matkovics B (1997) Organophosphate effects of antioxidant system of carp (Cyprinus carpio) and catfish (Ictalurus nebulosus). Comp Biochem Physiol 117:83–88 PMID: 9206589Google Scholar
  28. Hamm JT, Wilson BW, Hinton DE (2001) Increasing uptake and bioactivation with development positively modulate diazinon toxicity in early life stage medaka (Oryzias latipes). Toxicol Sci 61:304–313 PMID: 11353139PubMedCrossRefGoogle Scholar
  29. Iris F, Benzie F, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Anal Biochem 239:70–76CrossRefGoogle Scholar
  30. Isik I, Celik I (2008) Acute effects of methyl parathion and diazinon as inducers for oxidative stress on certain biomarkers in various tissues of rainbow trout (Oncorhynchus mykiss). Pestic Biochem Physiol 92:38–42. doi:10.1016/j.pestbp.2008.06.001 CrossRefGoogle Scholar
  31. Jos A, Pichardo S, Prieto AI, Repetto G, Vazquez CM, Moreno I, Camean AM (2005) Toxic cyanobacterial cells containing microcystins induce oxidative stress in exposed tilapia fish (Oreochromis sp.) under laboratory conditions. Aquat Toxicol 72:261–271. doi:10.1016/j.aquatox.2005.01.003 PubMedCrossRefGoogle Scholar
  32. Keizer J, D’Agostino G, Nagel R, Gramenzi F, Vittozzi L (1993) Comparative diazinon toxicity in guppy and zebra fish: different role of oxidative metabolism. Environ Toxicol Chem 12:1243–1250. doi:10.1002/etc.560120713 CrossRefGoogle Scholar
  33. Keizer J, D’Agostino G, Nagel R, Volpe T, Gnemid P, Vittozzi L (1995) Enzymological differences of AChE and diazinon hepatic metabolism: correlation of in vitro data with the selective toxicity of diazinon to fish species. Sci Total Environ 171:213–220 (SSDI: 0048-9697(95) 04687-V)PubMedCrossRefGoogle Scholar
  34. Khara H, Salar Amoli J, Mazloumi H, Nezami SHA, Zolfinezhad K, Khodaparast SH, Hasan J, Akbarzadeh A, Mohammadi S, Gholipour S, Gholipour Z, Taghizadeh M (2008) Survey and seasonal measurement of pesticide (hinosan, machete and diazinon) in water of Oshmak River (east of Guilan). J Biol Sci 2(4):29–43Google Scholar
  35. Khazaei SH (2007) Study of nitrate and diazinon residues in groundwater of Mahmoudabad area and verifying with one dimensional model. M.Sc. thesis, University of Tehran, Natural Resources Faculty, Department Fisheries and Environmental sciences, p 87Google Scholar
  36. Khazaei SH, Khorasani N, Talebi KH, Ehteshami M (2010) Investigation of the groundwater contamination due to the use of diazinon insecticide in Mazandaran Province (Case study: Mahmoud Abad City). J Natur Environ (Iranian J Natur Resour) 63(1):23–32Google Scholar
  37. Lartiges SB, Garrigues PP (1995) Degradation kinetics of organophosphorus and organonitrogen pesticides in different waters under various environmental conditions. Environ Sci Technol 29(5):1246–1254PubMedCrossRefGoogle Scholar
  38. Li PCH, Swanson EJ, Gobas FAPC (2002) Diazinon and its degradation products in agricultural water courses in British Columbia, Canada. Bull Environ Contam Toxicol 69:59–65. doi:10.1007/S00128-002-0010-0 PubMedCrossRefGoogle Scholar
  39. Li ZH, Li P, Randak T (2010a) Ecotoxocological effects of short-term exposure to a human pharmaceutical Verapamil in juvenile rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C 152:385–391. doi:10.1016/j.cbpc.2010.06.007 Google Scholar
  40. Li ZH, Zlabek V, Grabic R, Li P, Randak T (2010b) Modulation of glutathione-related antioxidant defense system of fish chronically treated by the fungicide propiconazole. Comp Biochem Physiol C 152:392–398. doi:10.1016/j.cbpc.2010.06.006 Google Scholar
  41. Li ZH, Zlabek V, Velíšek J, Grabic R, Machová J, Kolařová J, Li P, Randák T (2010c) Hepatic antioxidant status and hematological parameters in rainbow trout, Oncorhynchus mykiss, after chronic exposure to carbamazepine. Chem Biol Interact 183:98–104. doi:10.1016/j.cbi.2009.09.009 PubMedCrossRefGoogle Scholar
  42. Li ZH, Zlabek V, Velíšek J, Grabic R, Machová J, Kolařová J, Li P, Randák T (2010d) Biochemical and physiological responses in liver and muscle of rainbow trout after long-term exposure to propiconazole. Ecotoxicol Environ Saf 73(2010):1391–1396. doi:10.1016/j.ecoenv.2010.05.017 PubMedCrossRefGoogle Scholar
  43. Li ZH, Zlabek V, Velíšek J, Grabic R, Machová J, Kolařová J, Li P, Randák T (2010e) Chronic toxicity of verapamil on juvenile rainbow trout (Oncorhynchus mykiss): effects on morphological indices, hematological parameters and antioxidant responses. J Hazard Mater 185(2011):870–880. doi:10.1016/j.jhazmat.2010.09.102 PubMedGoogle Scholar
  44. Li ZH, Velisek J, Zlabek V, Grabic R, Machova J, Li P, Randak T (2011a) Chronic toxicity of verapamil on juvenile rainbow trout (Oncorhynchus mykiss): effects on morphological indices, hematological parameters and antioxidant responses. J Hazard Mater 185:870–880. doi:10.1016/j.jhazmat.2010.09.102 PubMedCrossRefGoogle Scholar
  45. Li ZH, Zlabek V, Velíšek J, Grabic R, Machová J, Kolařová J, Li P, Randák T (2011b) Antioxidant responses and plasma biochemical characteristics in the freshwater rainbow trout, Oncorhynchus mykiss, after acute exposure to the fungicide propiconazole. Czech J Anim Sci 56(2):61–69Google Scholar
  46. Luo Y, Su Y, Lin R, Shi H, Wang X (2006) 2-Chlorophenol induced ROS generation in fish Carassius auratus based on the EPR method. Chemosphere 65:1064–1073. doi:10.1016/j.chemosphere.2006.02.054 PubMedCrossRefGoogle Scholar
  47. Mansour M, Feicht EA, Behechti A, Schramm K, Kettrup A (1999) Determination photo-stability of selected agrochemicals in water and soil. Chemosphere 39:575–585. doi:10.1016/S0045-6535(99)00123-X PubMedCrossRefGoogle Scholar
  48. Matos P, Fontaínhas-Fernandes A, Peixoto F, Carrola J, Rocha E (2007) Biochemical and histological hepatic changes of Nile tilapia Oreochromis niloticus exposed to carbaryl. Pestic Biochem Physiol 89:73–80. doi:10.1016/j.pestbp.2007.03.002 CrossRefGoogle Scholar
  49. Mishra AK, Mohanty B (2008) Acute toxicity impacts of hexavalent chromium on behavior and histopathology of gill, kidney and liver of the freshwater fish, Channa punctatus (Bloch). Environ Toxicol Pharmacol 26:136–141. doi:10.1016/j.etap.2008.02.010 PubMedCrossRefGoogle Scholar
  50. Mobasher M, Aramesh K, Aldavoud SJ, Ashrafganjooei N, Divsalar K, Phillips CJC, Larijani B (2008) Proposing a national ethical framework for animal research in Iran. Iranian J Publ Health 37(1):39–46Google Scholar
  51. Monteiro DA, de Almeid JA, Rantin FT, Kalinin AL (2006) Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comp Biochem Physiol C 143:141–149. doi:10.1016/j.cbpc.2006.01.004 CrossRefGoogle Scholar
  52. Oruҫ EÖ, Usta D (2007) Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environ Toxicol Pharmacol 23:48–55. doi:10.1016/j.etap.2006.06.005 CrossRefGoogle Scholar
  53. Ozmen I, Bayir A, Cengiz M, Sirkecioglu AN, Atamanalp M (2004) Effects of water reuse system on antioxidant enzymes of rainbow trout (Oncorhynchus mykiss W., 1792). Vet Med Czech 49(10):373–378Google Scholar
  54. Parvez S, Pandey S, Ali M, Raisuddin S (2006) Biomarkers of oxidative stress in Wallago attu (Bl. and Sch.) during and after a fish-kill episode at Panipat, India. Sci Total Environ 368:627–636. doi:10.1016/j.scitotenv.2006.04.011 PubMedCrossRefGoogle Scholar
  55. Peña-Llopis S, Ferrando MD, Peña JB (2003) Fish tolerance to organophosphate-induced oxidative stress is dependent on the glutathione metabolism and enhanced by N-acetylcysteine. Aquat Toxicol 65:337–360. doi:10.1016/S0166-445X(03)00148-6 PubMedCrossRefGoogle Scholar
  56. Rahiminezhhad M, Shahtaheri SJ, Ganjalim R, Rahimi Foroushani A, Golbabaei F (2009) Moleculary imprinted solid phase extraction for trace analysis of diazinon in drinking water. IJEHSE 6:97–106Google Scholar
  57. Robbins SL (2007) Liver, biliary tract, and pancreas. In: Cortan RS, Kumar V, Robbins SL (eds) Robbins pathologic basis of disease, 5th edn. Saunders, Philadelphia, pp 941–949Google Scholar
  58. Schlenk D (2005) Pesticide biotransformation in fish. In: Mommsen TP, Moon TW (eds) Biochemistry and molecular biology of fishes, vol 6. Elsevier, Amsterdam, pp 171–190Google Scholar
  59. Seguchi K, Asaka S (1981) Intake and excretion of diazinon in freshwater fishes. Bull Environ Contam Toxicol 27:244–249. doi:0007-4861/81/0027-0244 PubMedCrossRefGoogle Scholar
  60. Sepici-Dinçel A, Cağlan Karasu Benli A, Selvi M, Sarıkaya R, Şahin D, Özkul IA, Erkoç F (2009) Sublethal cyfluthrin toxicity to carp (Cyprinus carpio L.) fingerlings: biochemical, hematological, histopathological alterations. Ecotoxicol Environ Saf 72:1433–1439. doi:10.1016/j.ecoenv.2009.01.008 PubMedCrossRefGoogle Scholar
  61. Shayeghi M, Javadian EA (2001) Study of the residue of lindin and diazinon in the rice fields in Tonkabon City (Mazandaran Province) 1999. J Environ Sci Technol 9:51–58Google Scholar
  62. Shayeghi M, Darabi H, Abtahi H, Sadeghi M, Pakbaz F, Golestaneh SR (2007) Assessment of persistence and residue of diazinon and malathion in three Rivers (Mond, Shahpour and Dalaky) of Bushehr province in 2004–2005 years. Iranian South Med J 10(1):54–60Google Scholar
  63. Shayeghi M, Khoidel M, Bageri F, Abtahi M (2008) Azinphos methyl and diazinon residues in rivers of Qara-Su River and Gorgan-rud River in Golestan Province. J Publ Health Health Res Inst 6(1):75–82Google Scholar
  64. Sureda A, Box A, Ensenat M, Alou E, Tauler P, Deudero S, Pons A (2006) Enzymatic antioxidant response of a labrid fish (Coris julis) liver to environmental caulerpenyne. Comp Biochem Physiol C 144:191–196. doi:10.1016/j.cbpc.2006.08.001 Google Scholar
  65. Sureda A, Box A, Deudero S, Pons A (2009) Reciprocal effects of caulerpenyne and intense herbivorism on the antioxidant response of Bittium reticulatum and Caulerpa taxifolia. Ecotoxicol Environ Saf 72:795–801. doi:10.1016/j.ecoenv.2007.12.007 PubMedCrossRefGoogle Scholar
  66. Talebi K (1998) Diazinon residues in the basins of Anzali Lagoon, Iran. Bull Environ Contam Toxicol 61:477–483PubMedCrossRefGoogle Scholar
  67. Tarahi Tabrizi S (2001) Study of pesticide residues (diazinon, malathion, metasytoux) in the Tabriz Nahand River, M.Sc. thesis, Tehran University of Medical Science, Tehran, Iran, pp 1–88Google Scholar
  68. Tavakol M (2007) Environmental impact assessment of diazinon in rice fields (a Case Study on Amol Township Rice Fields), M.Sc. thesis, Science and Research Branch, Islamic Azad University, Tehran, Iran, pp 1–95Google Scholar
  69. Tejada S, Sureda A, Roca C, Gamundí A, Esteban S (2007) Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine. Brain Res Bullet 71:372–375. doi:10.1016/j.brainresbull.2006.10.005 CrossRefGoogle Scholar
  70. Trenzado C, Hidalgo MC, García-Gallego M, Morales AE, Furné M, Domezain A, Domezain J, Sanz A (2006) Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss. A comparative study. Aquaculture 254:758–767. doi:10.1016/j.aquaculture.2005.11.020 CrossRefGoogle Scholar
  71. Üner N, Oruç EÖ, Sevgiler Y, Şahin N, Durmaz H, Usta D (2006) Effects of diazinon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus. Environ Toxicol Pharmacol 21:241–245. doi:10.1016/j.etap.2005.08.007 PubMedCrossRefGoogle Scholar
  72. van Dyk JC, Pieterse GM, van Vuren JHJ (2007) Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicol Environ Saf 66:432–440. doi:10.1016/j.ecoenv.2005.10.012 PubMedCrossRefGoogle Scholar
  73. Vinodhini R, Narayanan M (2009) Heavy metal induced histopathological alterations in selected organs of the Cyprinus carpio L. (Common Carp). Int J Environ Res 3(1):95–100Google Scholar
  74. Wang TC, Hoffman ME (1991) Degradation of organophosphorus pesticides in coastal water. J Assoc Off Anal Chem 74(5):883–886Google Scholar
  75. Zaruk D, Comba M, Struger J, Young S (2001) Comparison of immunoassay with a conventional method for the determination of Diazinon in surface waters. Anal Chim Acta 444:163–168 (PII: S0003-2670(01)01158-8)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mahdi Banaee
    • 1
  • Antoni Sureda
    • 2
  • Ali Reza Mirvaghefi
    • 3
  • Kamal Ahmadi
    • 4
  1. 1.Department of Aquaculture, Natural Resource and Environmental FacultyBehbahan University of TechnologyBehbahanIran
  2. 2.Grup de Nutrició Comunitària i Estrès Oxidatiu (IUNICS); Department of Biology ScienceBalearic Islands UniversityIlles BalearsSpain
  3. 3.Department of Fishery and Environment, Natural Resource FacultyUniversity of TehranKarajIran
  4. 4.Young Researchers Club, Tehran North BranchIslamic Azad UniversityTehranIran

Personalised recommendations