Fish Physiology and Biochemistry

, Volume 39, Issue 3, pp 431–457 | Cite as

Beta-glucan: an ideal immunostimulant in aquaculture (a review)

  • D. K. Meena
  • Pronob Das
  • Shailesh Kumar
  • S. C. Mandal
  • A. K. Prusty
  • S. K. Singh
  • M. S. Akhtar
  • B. K. Behera
  • Kundan Kumar
  • A. K. Pal
  • S. C. Mukherjee


The major hindrance in the development and sustainability of aquaculture industry is the occurrence of various diseases in the farming systems. Today, preventive and management measures are central concern to overcome such outbreak of diseases. Immunostimulants are considered as an effective tool for enhancing immune status of cultured organisms. Among different immunostimulants used in aquaculture practices, β-glucan is one of the promising immunostimulant, which is a homopolysaccharide of glucose molecule linked by the glycoside bond. It forms the major constituents of cell wall of some plants, fungi, bacteria, mushroom, yeast, and seaweeds. Major attention on β-glucan was captivated with the gain in knowledge on its receptors and the mechanism of action. The receptor present inside the animal body recognizes and binds to β-glucan, which in turn renders the animal with high resistance and enhanced immune response. This review highlights β-glucan as an immunostimulant, its effective dosages, and route of administration and furthermore provides an outline on role of β-glucan in enhancing growth, survival, and protection against infectious pathogens pertaining to fishes and shellfishes. Study also summarizes the effect of β-glucan on its receptors, recognition of proteins, immune-related enzymes, immune-related gene expression and their mechanisms of action.


β-Glucan β-Glucan receptor β-Glucan binding protein Prophenoloxidase Immunostimulant Aquaculture Prebiotics 





Lipopolysaccharide and β-glucan binding protein




β-Glucan receptor




Toll like receptor


White spot syndrome virus


Relative percent survival


Feed efficiency ratio


Yeast and yeast subcomponents


Yeast cell wall


Yeast β-glucan


Brewer’s yeast glucan


Carboxymethyl β-glucan


Total hemocyte count


β-Glucan binding protein–high density lipopolysaccharide


  1. Aakre R, Wergeland HI, Aasjord PM, Endresen C (1994) Enhanced antibody response in Atlantic salmon (Salmo salar L.) to Aeromonas salmonicida cell wall antigens using a bacterin containing β-1,3-M-glucan as adjuvant. Fish Shellfish Immunol 4:47–61CrossRefGoogle Scholar
  2. Adam EL, Rice PJ, Graves B, Ensley HE, Yu H, Brown GD, Gordon S, Monteiro MA, Papp-Szabo E, Lowman DW, Power TD, Wempe MF, Williams DL (2008) Differential high affinity interaction of Dectin-1 with natural or synthetic glucans is dependant upon primary structure and is influenced by polymer chain length and side chain branching. J Pharmacol Exp Ther 325(1):115–123CrossRefGoogle Scholar
  3. Ahne W (1993) Presence of interleukins (IL-1, IL-3, IL-6) and the tumor necrosis factor (TNF alpha) in fish sera. Bull Eur Assoc Fish Pathol 13:106–107Google Scholar
  4. Ai Q, Mai K, Zhang L, Tan B, Zhang W, Xu W, Li H (2007) Effects of dietary β-1, 3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol 22(4):394–402PubMedCrossRefGoogle Scholar
  5. Ai HS, Huang YC, Li SD, Weng SP, Yu XQ, He JG (2008) Characterization of a prophenoloxidase from hemocytes of the shrimp Litopenaeus vannamei that is down-regulated by white spot syndrome virus. Fish Shellfish Immunol 25(1–2):28–39PubMedCrossRefGoogle Scholar
  6. Ai HS, Liao JX, Huang XD, Yin ZX, Weng SP, Zhao ZY, Li SD, Yu XQ, He JG (2009) A novel prophenoloxidase 2 exists in shrimp hemocytes. Dev Comp Immunol 33(1):59–68PubMedCrossRefGoogle Scholar
  7. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801PubMedCrossRefGoogle Scholar
  8. Akramiene D, Kondrotas A, Didziapetriene J, Kevelaitis E (2007) Effects of β-glucans on the immune system. Medicina 43(8):597–606PubMedGoogle Scholar
  9. Anas A, Lowman DW, Williams DL, Millen S, Pai SS, Sajeevan TP, Philip R, Singh ISB (2009) Alkali insoluble glucan extracted from Acremonium diospyri is a more potent immunostimulant in the Indian White shrimp, Fenneropenaeus indicus than alkali soluble glucan. Aquac Res 40(11):1320–1327CrossRefGoogle Scholar
  10. Anderson DP (1997) Adjuvants and immunostimulants for enhancing vaccine potency in fish. Dev Biol Stand 90:257–265PubMedGoogle Scholar
  11. Anderson DP, Siwicki AK (1994) Duration of protection against Aeromonas salmonicida in brook trout immunostimulated with glucan or chitosan by injection or immersion. Prog Fish Cult 56:258–261CrossRefGoogle Scholar
  12. Arancibia SA, Beltrán CJ, Aguirre IM, Silva P, Peralta AL, Malinarich F, Hermoso MA (2007) Toll-like receptors are key participants in innate immune responses. Biol Res 40:97–112PubMedCrossRefGoogle Scholar
  13. Arts JAJ, Ferry HJ, Cornelissen F, Cijsouw T, Hermsen T, Savelkoul HFJ, Stet RJ (2007) Molecular cloning and expression of a toll receptor in the giant tiger shrimp, Penaeus monodon. Fish Shellfish Immunol 23(3):504–513PubMedCrossRefGoogle Scholar
  14. Ashida T, Okimasu E, Ui M, Heguri M, Oyama Y, Amemura A (1999) Protection of Japanese flounder Paralichthys olivaceus against experimental Edwardsiellosis by formalin-killed Edwardsiella tarda in combination with oral administration of immunostimulants. Fish Sci 65:527–530Google Scholar
  15. Aspan A, Soderhall K (1991) Purification of prophenoloxidase from crayfish blood cells, and its activation by an endogenous serine proteinase. Insect Biochem 21:363–373CrossRefGoogle Scholar
  16. Aspan A, Hall M, Soderhall K (1990) The effect of endogenus proteinase inhibitors on the phenol oxidase activating enzyme, a series proteinase from crayfish hemocytes. Insect Biochem 20:485–492CrossRefGoogle Scholar
  17. Bagni M, Romano N, Finola MG, Abelli L, Scapigliati G, Tiscar PG, Sarti M, Marino G (2005) Short- and long-term effects of a dietary yeast β-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax). Fish Shellfish Immunol 18:311–325PubMedCrossRefGoogle Scholar
  18. Bagni M, Archetti L, Amadori M, Marino G (2008) Effect of long-term administration of an immunostimulant diet on immunity in sea bass (Dicentrarchus labrax). J Vet Med B 47:745–751CrossRefGoogle Scholar
  19. Baoprasertkul P, Xu P, Peatman E, Kucuktas H, Liu Z (2007) Divergent Toll-like receptors in catfish (Ictalurus punctatus): TLR5S, TLR20, TLR21. Fish Shellfish Immunol 23(6):1218–1230PubMedCrossRefGoogle Scholar
  20. Behall KM, Scholfield DJ, Hallfrisch J (1997) Effect of beta-glucan level in oat fiber extracts on blood lipids in men and women. J Am Coll Nutr 16:46–51PubMedGoogle Scholar
  21. Bell S, Goldman VM, Bistrian BR, Arnold AH, Ostroff G, Forse RA (1999) Effect of beta-glucan from oats and yeast on serum lipids. Crit Rev Food Sci Nutr 39:189–202PubMedCrossRefGoogle Scholar
  22. Bendelac A, Fearon DT (2000) Innate immunity receptors and effectors of innate immunity. Curr Opin Immunol 12:11–12CrossRefGoogle Scholar
  23. Berg A, Bergh O, Fjelldal PG, Hansen T, Juell JE, Nerland A (2006) Dyrevelferdsmessige konsekvenser av vaksinasjon av fiskdeffekter og bivirkninger [Animal welfare and fish vaccination defects and side-effects]. Fisken Havet 9:1–43Google Scholar
  24. Bonaldo A, Thompson KD, Manfrin A, Adams A, Murano E, Mordenti AL, Gatta PP (2007) The influence of dietary β-glucans on the adaptive and innate immune responses of European sea bass (Dicentrarchus labrax) vaccinated against vibriosis. Ital J Anim Sci 6:151–164Google Scholar
  25. Bondad-Reantaso MG, Subasinghe RP, Arthur JR, Ogawa K, Chinabut S, Adlard R, Tan Z, Shariff M (2005) Disease and health management in Asian aquaculture. Vet Para 132:249–272CrossRefGoogle Scholar
  26. Braaten JT, Wood PJ, Scott FW, Wolynetz MS, Lowe MK, Bradley-White P, Collins MW (1994) Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur J Clin Nutr 48:465–474PubMedGoogle Scholar
  27. Breedveld MW, Milleri KJ (1994) Cyclic, β-glucans of members of the family Rhizobiaceae. Microbiol Rev 58(2):145–161PubMedGoogle Scholar
  28. Bricknell I, Dalmo RA (2005) The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol 19:457–472PubMedCrossRefGoogle Scholar
  29. Bridle AR, Carter CG, Morrison RN, Nowak BF (2005) The effect of beta-glucan administration on macrophage respiratory burst activity and Atlantic salmon, Salmo salar L., challenged with amoebic gill disease-evidence of inherent resistance. J Fish Dis 28:347–356PubMedCrossRefGoogle Scholar
  30. Brochers AT, Stern JS, Hackman RM, Keen LC, Gershwin ME (1999) Mushrooms, tumors and immunity. Proc Soc Exp Biol Med 221:281–293CrossRefGoogle Scholar
  31. Brown GD, Herre J, Williams DL, Willment JA, Marshall ASJ, Gordon S (2003) Dectin-1 mediates the biological effects of β-glucans. J Exp Med 197:1119–1124PubMedCrossRefGoogle Scholar
  32. Burgents JE, Burnett K, Burnett LE (2004) Disease resistance of Pacific white shrimp, Litopenaeus vannamei, following the dietary administration of a yeast culture food supplement. Aquaculture 231(1–4):1–8CrossRefGoogle Scholar
  33. Campa-Córdova AI, Hernández-Saavedra NY, De Philippis R, Ascencio F (2002) Generation of superoxide anion and SOD activity in haemocytes and muscle of American white shrimp (Litopenaeus vannamei) as a response to β-glucan and sulphated polysaccharide. Fish Shellfish Immunol 12(4):353–366PubMedCrossRefGoogle Scholar
  34. Chang CF, Su MS, Chen HY, Lo CF, Kou GH, Liao IC (1999) Effects of dietary β-1,3-glucan on resistance to white spot syndrome virus (WSSV) in postlarval and juvenile Penaeus monodon. Dis Aquat Organ 36:163–168CrossRefGoogle Scholar
  35. Chang CF, Chen HY, Su MS, Liao IC (2000) Immunomodulation by dietary β-1,3-glucan in the brooders of the grass prawn Penaeus monodon. Fish Shellfish Immunol 10:505–514PubMedCrossRefGoogle Scholar
  36. Chang CF, Su MS, Chen HY, Liao IC (2003) Dietary β-1,3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish Shellfish Immunol 15(4):297–310PubMedCrossRefGoogle Scholar
  37. Chansue N, Endo M, Kono T, Sakai M (2000) The stimulation of cytokine-like proteins in tilapia (Oreochromis niloticus) orally treated with β-1, 3-glucan. Asian Fish Sci 13:271–278Google Scholar
  38. Chen J, Seviour R (2007) Medicinal importance of fungal β-(1–3), (1–6)-glucans. Mycol Res 111:635–652PubMedCrossRefGoogle Scholar
  39. Cheng W, Liu CH, Tsai CH, Chen JC (2005) Molecular cloning and characterisation of a pattern recognition molecule, lipopolysaccharide- and β-1,3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 18(4):297–310PubMedCrossRefGoogle Scholar
  40. Chihara G (1992) Recent progress in immunopharmacology and therapeutic effects of polysaccharides. Dev Biol Stand 77:191–197PubMedGoogle Scholar
  41. Chotikachinda R, Lapjatupon W, Chaisilapasung S, Sangsue D, Tantikitti C (2008) Effect of inactive yeast cell wall on growth performance, survival rate and immune parameters in Pacific White Shrimp (Litopenaeus vannamei). J Sci Technol 30(6):687–692Google Scholar
  42. Cook MT, Hayball PJ, Hutchinson W, Nowak B, Hayball JD (2001) The efficacy of a commercial β-glucan preparation, EcoActiva™, on stimulating respiratory burst activity of head-kidney macrophages from pink snapper (Pagrus auratus), Sparidae. Fish Shellfish Immunol 11(8):661–672PubMedCrossRefGoogle Scholar
  43. Cook MT, Hayball PJ, Hutchinson W, Nowak BF, Hayball JD (2003) Administration of a commercial immunostimulant preparation, EcoActiva™ as a feed supplement enhances macrophage respiratory burst and growth rate of snapper (Pagrus auratus, Sparidae (Bloch and Schneider)) in winter. Fish Shellfish Immunol 14:333–345PubMedCrossRefGoogle Scholar
  44. Costa MM, Novoa B, Figueras A (2008) Influence of β-glucans on the immune responses of carpet shell clam (Ruditapes decussatus) and Mediterranean mussel (Mytilus galloprovincialis). Fish Shellfish Immunol 24(5):498–505CrossRefGoogle Scholar
  45. Cuesta A, Rodríguez A, Salinas I, Meseguer J, Esteban MA (2007) Early local and systemic innate immune responses in the teleost gilthead seabream after intra-peritoneal injection of whole yeast cells. Fish Shellfish Immunol 22(3):242–251PubMedCrossRefGoogle Scholar
  46. Czop JK, Austen KF (1985) A beta-glucan inhibitable receptor on human monocytes: its identity with the phagocytic receptor for particulate activators of the alternative complement pathway. J Immunol 134:2588–2593PubMedGoogle Scholar
  47. deBaulny MO, Quentel C, Fournier V, Lamour F, LeGouvello R (1996) Effect of long-term oral administration of beta-glucan as an immunostimulant or an adjuvant on some non-specific parameters of the immune response of turbot, Scophthalmus maximus. Dis Aquat Org 26:139–147CrossRefGoogle Scholar
  48. Dennehy KM, Brown GD (2007) The role of the β-glucan receptor Dectin-1 in control of fungal infection. J Leukoc Biol 82:253–258PubMedCrossRefGoogle Scholar
  49. Di Luzio N (1985) Update on the immunomodulating activities of glucans. Springer Semin Immunopathol 8:387–400PubMedCrossRefGoogle Scholar
  50. Djordievic B, Skugor S, Jorgensen SM, Overland M, Myland LT, Krasnov A (2009) Modulation of splenic immune response to bacterial lipopolysaccride in rainbow trout (Oncorhynchus mykiss) fed lentinin, a β-glucan from mushroom Lentinula edodes. Fish Shellfish Immunol 26(2):201–209CrossRefGoogle Scholar
  51. Du XJ, Zhao XF, Wang JX (2007) Molecular cloning and characterization of a lipopolysaccharide and β-1,3-glucan binding protein from fleshy prawn (Fenneropenaeus chinensis). Mol Immunol 44(6):1085–1094PubMedCrossRefGoogle Scholar
  52. El-Boshy ME, EL-Ashram AMM, El-Ghany NAA (2008) Effect of dietary beta-1,3 glucan on Immunomodulation on diseases Oreochromis Niloticus Experimentally Infected with Aflatoxin B1. In: Proceedings of 8th international symposium on tilapia in aquaculture, pp 1109–1127Google Scholar
  53. Ellsaesser CF, Clem LW (1994) Functionally distinct high and low molecular weight species of channel catfish and mouse IL-1. Cytokine 6:345–364CrossRefGoogle Scholar
  54. FAO (2002) Antibiotics residue in aquaculture products. The State of World Fisheries and Aquaculture, pp 74–82 (Rome, Italy)Google Scholar
  55. Fearon DT, Locksley RM (1996) The instructive role of innate immunity in acquired immune response. Science 272:50–54PubMedCrossRefGoogle Scholar
  56. Figueras A, Santarém MM, Nov B (1998) Influence of the sequence of administration of β-glucans and a Vibrio damsela vaccine on the immune response of turbot (Scophthalmus maximus L.). Vet Immunol Immunopathol 64(1):59–68PubMedCrossRefGoogle Scholar
  57. Franch R, Cardazzo B, Antonello J, Castagnaro M, Patarnello T, Bargelloni L (2006) Full-length sequence and expression analysis of toll-like receptor 9 in the gilthead seabream (Sparus aurata L.). Gene 378:42–51PubMedCrossRefGoogle Scholar
  58. Galeotti M (1998) Some aspects of the application of immunostimulants and critical review of methods for their evaluation. J Appl Ichthyol 14:189–199CrossRefGoogle Scholar
  59. Galindo-Villegas J, Hosokawa H (2004) Immunostimulants: towards temporary prevention of diseases in marine fish. In: Cruz Suarez LE, Ricque MD, Nieto Lopez MG, Villareal D, Scholz Y,Gonzalez M (eds) Advances en nutricion. Acuicola VII Memorias del VII Simposium Internationale de Nutricion Acuícola, vols 16–19, pp 279–319Google Scholar
  60. Ganguly S, Paul I, Mukhopadhayay SK (2010) Application and effectiveness of immunostimulants, probiotics, and prebiotics in aquaculture: a review. Isr J Aquac Bamidgeh 62:130–138Google Scholar
  61. Gannam AL, Schrock RM (1999) Immunostimulants in fish diets. J Appl Aquac 9:53–89CrossRefGoogle Scholar
  62. Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM (2003) Collaborative induction of inflammatory responses by dectin-1 and toll-like receptor 2. J Exp Med 197:1107–1117PubMedCrossRefGoogle Scholar
  63. Gatlin DM III, Li P, Wang X, Burr GS, Castille F, Lacorence A (2006) Potential application of prebiotics in aquaculture. In: Suarez LEC, Marie DR, Salazar MT, Martha G, Lopez N, David A, Cavazos V, Ana C, Ortega PCAG (eds) Avances en Nutricion Acuicola VIII. VIII Simposium Internacioral de Nutricion Acuicola, 15–17 noviembre. Universidad Autonoma de Nuevo Leon, Monterrey. ISBN 970-694-333-5Google Scholar
  64. Gatlin DM III, Li P (2004) Dietary supplementation of prebiotics for haelth management of hybrid stripped bass morone chrysops X M. saxatilis. Aqua Feeds Formul Beyond 1(4):19–21Google Scholar
  65. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota. Introducing the concept of prebiotics. J Nutr 125:1401–1412PubMedGoogle Scholar
  66. Grisdale-Helland B, Helland SJ, Gatlin DM III (2008) The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquaculture 283:163–167CrossRefGoogle Scholar
  67. Guselle NJ, Markham RJF, Speare DJ (2007) Timing of intraperitoneal administration of β-1,3/1,6 glucan to rainbow trout, Oncorhynchus mykiss (Walbaum), affects protection against the microsporidian Loma salmonae. J Fish Dis 30(2):111–116PubMedCrossRefGoogle Scholar
  68. Hai NV, Fotedar R (2009) Comparison of the effects of the prebiotics (Bio-Mos® and β-1,3-d-glucan) and the customised probiotics (Pseudomonas synxantha and P. aeruginosa) on the culture of juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquaculture 289:310–316CrossRefGoogle Scholar
  69. Hall M, Soderhall K, Sottrup-Jensen L (1989) Amino acid sequence around the thiolester of α2-macroglobulin from hemolymph of the crayfish, Pacifastacus leniusculas. FEBS Lett 254:111–114Google Scholar
  70. Hardie LJ, Chappell LH, Secombes CJ (1994) Human tumor necrosis factor α influences rainbow trout Oncorhynchus mykiss leucocyte responses. Vet Immunol Immunopathol 40(1):73–84PubMedCrossRefGoogle Scholar
  71. Hergenhahn HG, Aspan A, Soderhall K (1987) Purification and characterization of a high—Mr proteinase inhibitor of pro-phenol oxidase activation from crayfish plasma. Biochem J 248:223–228PubMedGoogle Scholar
  72. Herre J, Gordon S, Brown GD (2004) Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol Immunol 40:869–876PubMedCrossRefGoogle Scholar
  73. Hirono I, Takami M, Miyata M, Miyazaki T, Han HJ, Takano T, Endo M, Aoki T (2004) Characterization of gene structure and expression of two toll-like receptors from Japanese flounder, Paralichthys olivaceus. Immunogenetics 56(1):38–46PubMedCrossRefGoogle Scholar
  74. Huang CC, Song YL (1999) Maternal transmission of immunity to white spot syndrome associated virus (WSSV) in shrimp (Penaeus monodon). Dev Comp Immunol 23(7–8):545–552PubMedCrossRefGoogle Scholar
  75. Itoh W (1997) Augmentation of protective immune responses against viral infection by oral administration of schizophyllan. Mediat Inflamm 6:267–269CrossRefGoogle Scholar
  76. Jeney G, Galeotti M, Volpatti D, Jeney Z, Anderson DP (1997) Prevention of stress in rainbow trout (Oncorhynchus mykiss) fed diets containing different doses of glucan. Aquaculture 154(1):1–15CrossRefGoogle Scholar
  77. Johansson MW, Soderhall K (1988) Isolation and purification of a cell adhesion factor from crayfish blood cells. J Cell Biol 106:1795–1804PubMedCrossRefGoogle Scholar
  78. Johansson MW, Soderhall K (1989) Cellular immunity in crustacean and the proPO system. Parasitol Today 5:171–176PubMedCrossRefGoogle Scholar
  79. Johansson MW, Holmblad T, Thornqvist PO, Cammarata M, Parrinello N, Soderhall K (1999) A cell-surface peroxide dismutase is a binding protein for peroxinectin, a cell-adhesive peroxidase in crayfish. J Cell Sci 112:917–925PubMedGoogle Scholar
  80. Jorgensen JB, Lunde H, Robertsen B (1993) Effect of a yeast-cell-wall glucan on the bactericidal activity of rainbow trout macrophages. Fish Shellfish Immunol 3:267–277CrossRefGoogle Scholar
  81. Kamilya D, Maiti TK, Joardar SN, Mal BC (2006) Adjuvant effect of mushroom glucan and bovine lactoferrin upon Aeromonas hydrophila vaccination in catla, Catla catla (Hamilton). J Fish Dis 29:331–337PubMedCrossRefGoogle Scholar
  82. Kawakami H, Shinohara N, Sakai M (1998) The non-specific immunostimulation and adjuvant effects of Vibrio anguillarum bacterin, M-glucan, chitin and Freund’s complete adjuvant against Pasteurella piscicida infection in yellowtail. Fish Pathol 33:287–292CrossRefGoogle Scholar
  83. Kim YS, Ke F, Zhang QY (2009) Effect of β-glucan on activity of antioxidant enzymes and Mx gene expression in virus infected grass carp. Fish Shellfish Immunol 27(2):336–340PubMedCrossRefGoogle Scholar
  84. Klannukarn SS, Wongprasert K, Khanobdee K, Meeratana P, Taweepreda P, Withyachumnarnkul B (2004) Vibrio bacterin and carboxymethyl β-glucans protect Penaeus monodon from vibrio harveyi infection. J Aquat Anim Health 16:238–245CrossRefGoogle Scholar
  85. Ko CF, Chiou TT, Vaseeharan B, Lu JK, Chen JC (2007) Cloning and characterisation of a prophenoloxidase from the haemocytes of mud crab Scylla serrata. Dev Comp Immunol 31(1):12–22PubMedCrossRefGoogle Scholar
  86. Kobayashi M, Soderhall K (1990) Comparison of concanavalin A reactive determinant on isolated haemocytes of parasite infected and non-infected freshwater crayfish. Dis Aquat Org 9:141–147CrossRefGoogle Scholar
  87. Kumari J, Sahoo PK (2006a) Dietary immunostimulants influence specific immune response and resistance of healthy and immunocompromised Asian catfish Clarias batrachus to Aeromonas hydrophila infection. Dis Aquat Org 70:63–70PubMedCrossRefGoogle Scholar
  88. Kumari J, Sahoo PK (2006b) Non-specific immune response of healthy and immunocompromised Asian catfish (Clarias batrachus) to several immunostimulants. Aquaculture 255:133–141CrossRefGoogle Scholar
  89. Kunttu HMT, Valtonen ET, Suomalainen LR, Vielma J, Jokinen IE (2009) The efficacy of two immunostimulants against Flavobacterium columnare infection in juvenile rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 26(6):850–857PubMedCrossRefGoogle Scholar
  90. Lai CY, Cheng W, Kuo CM (2005) Molecular cloning and characterisation of prophenoloxidase from haemocytes of the white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 18(5):417–430PubMedCrossRefGoogle Scholar
  91. Lai-Fook J (1966) The repair of wounds in the integument of insects. J Insect Physiol 12:195–226Google Scholar
  92. Lara-Flores M, Olvera-Novoa MA, Guzman-Mendez BE, Lopez-Madrid W (2002) Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture 216:193–201CrossRefGoogle Scholar
  93. Lebron F, Vassallo R, Puri V, Limper AH (2003) Pneumocystis carinii cell wall β-glucans initiate macrophage inflammatory responses through NF-kappaB activation. J Biol Chem 278:25001–25008PubMedCrossRefGoogle Scholar
  94. Li P, Gatlin DM III (2003) Evaluation of brewers yeast (Saccharomyces cerevisiae) as a feed supplement for hybrid striped bass (Morone chrysops M. saxatilis). Aquaculture 219:681–692CrossRefGoogle Scholar
  95. Li P, Gatlin DM III (2004) Dietary brewers yeast and the prebiotic GrobiotickAE influence growth performance, immune responses and resistance of hybrid striped bass (Morone chrysops M. saxatilis) to Streptococcus iniae infection. Aquaculture 231:445–456CrossRefGoogle Scholar
  96. Li P, Gatlin DM III (2005) Evaluation of the prebiotic GroBioticR-A and brewers yeast as dietary supplements for sub-adult hybrid striped bass (Morone chrysops M. saxatilis) challenged in situ with Mycobacterium marinum. Aquaculture 248:197–205CrossRefGoogle Scholar
  97. Li P, Burr GS, Gatlin DM III, Hume ME, Patnaik S, Castille FL, Lawrence AL (2007) Dietary supplementation of short-chain fructooligosaccharides influences gastrointestinal microbiota composition and immunity characteristics of Pacific White Shrimp, Litopenaeus vannamei, cultured in a recirculating system. J Nutr 137:2763–2768PubMedGoogle Scholar
  98. Li YH, Zheng FL, Chen HQ, Wang HZ, Wang LQ, Xu DP (2009) Cloning and sequence analysis of prophenoloxidase from haemocytes of the red swamp crayfish, Procambarus clarkii. Agric Sci China 8(3):369–379CrossRefGoogle Scholar
  99. Liu CH, Tseng DY, Lai CY, Cheng W, Kuo CM (2006) Molecular cloning and characterisation of prophenoloxidase cDNA from haemocytes of the giant freshwater prawn, Macrobrachium rosenbergii, and its transcription in relation with the moult stage. Fish Shellfish Immunol 21:60–69PubMedCrossRefGoogle Scholar
  100. Liu F, Li F, Dong B, Wang X, Xiang J (2009) Molecular cloning and characterisation of a pattern recognition protein, lipopolysaccharide and β-1,3-glucan binding protein (LGBP) from Chinese shrimp Fenneropenaeus chinensis. Mol Biol Rep 36(3):471–477PubMedCrossRefGoogle Scholar
  101. Lochmann RT, Sink TD, Phillips H (2009) Effects of dietary lipid concentration, a dairy-yeast prebiotic, and fish and nonfish protein sources on growth, survival, and nonspecific immune response of golden shiners in indoor tanks and outdoor pools. N Am J Aquac 71:16–23CrossRefGoogle Scholar
  102. Lopez N, Cuzon G, Gaxiola G, Taboada G, Valenzuela M, Pascual C, Sanchez A, Rosas C (2003) Physiological, nutritional, and immunological role of dietary β-1-3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles. Aquaculture 224:223–243CrossRefGoogle Scholar
  103. Løvoll M, Fischer U, Mathisen GS, Bogwald J, Ototake M, Dalmo RA (2007) The C3 subtypes are differentially regulated after immunostimulation in rainbow trout, but head kidney macrophages do not contribute to C3 transcription. Vet Immunol Immunopathol 117(3–4):284–295PubMedCrossRefGoogle Scholar
  104. Lu KY, Huang YR, Lee HH, Sung HH (2006) Cloning the prophenoloxidase cDNA and monitoring the expression of proPO mRNA in prawns (Macrobrachium rosenbergii) stimulated in vivo by CpG oligodeoxynucleotides. Fish Shellfish Immunol 20(3):274–284PubMedCrossRefGoogle Scholar
  105. Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151PubMedCrossRefGoogle Scholar
  106. Magnadóttir B (2010) Immunological control of fish diseases. Mar Biotechnol 12:361–379PubMedCrossRefGoogle Scholar
  107. Mazurkiewicz J, Przybyl A, Golski J (2008) Usability of Fermacto prebiotic in feeds for common carp (Cyprinus carpio L.) fry. Nauka Przyr Technol 2:3–15Google Scholar
  108. Meijer AH, Gabby KSF, Medina RIA, He S, Bitter W, Snaar-Jagalska BE, Spaink HP (2004) Expression analysis of the toll-like receptor and TIR domain adaptor families of zebrafish. Mol Immunol 40(11):773–783PubMedCrossRefGoogle Scholar
  109. Mekata T, Kono T, Yoshida T, Sakai M, Itami T (2008) Identification of cDNA encoding toll receptor, MjToll gene from kuruma shrimp, Marsupenaeus japonicus. Fish Shellfish Immunol 24(1):122–133PubMedCrossRefGoogle Scholar
  110. Midtlyng PJ, Reitan LJ, Speilberg L (1996) Experimental studies on the efficacy and side-effects of intraperitoneal vaccination of Atlantic salmon (Salmo salar L.) against furunculosis. Fish Shellfish Immunol 6:335–350CrossRefGoogle Scholar
  111. Mikrou A, Marioli D, Papanastasiou AD, Zarkadis IK (2009) Cloning and characterization in rainbow trout. Fish Shellfish Immunol 26(1):19–28PubMedCrossRefGoogle Scholar
  112. Misra CK, Das BK, Mukherjee SC, Pattnaik P (2006a) Effect of multiple injections of beta-glucan on non-specific immune response and disease resistance in Labeo rohita fingerlings. Fish Shellfish Immunol 20(3):305–319PubMedCrossRefGoogle Scholar
  113. Misra CK, Das BK, Mukherjee SC, Pattnaik P (2006b) Effect of long term administration of dietary β-glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture 255(1–4):82–94CrossRefGoogle Scholar
  114. Miura NN, Ohno N, Aketagawa J, Tamura H, Tanaka S, Yadomae T (1996) Blood clearance of (1–3)-beta-d-glucan in MRL lpr/lpr mice. FEMS Immunol Med Microbiol 13(1):51–57PubMedGoogle Scholar
  115. Muller A, Raptis J, Rice PJ, Kalbfleisch JH, Stout RD, Ensley HE, Browder W, Williams DL (2000) The influence of glucan polymer structure and solution conformation on binding to (133)—d-glucan receptors in a human monocyte-like cell line. Glycobiology 10:339–346CrossRefGoogle Scholar
  116. Namikoshi A, Wu JL, Yamashita T, Nishizawa T, Nishioka T, Arimoto M, Kiyokuni M (2004) Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus. Aquaculture 229:25–35CrossRefGoogle Scholar
  117. Nappi AJ, Vass E (1993) Melanogenesis and generation of cytotoxic molecule during insect cellular reactions. Pigm Cell Res 6:117–126CrossRefGoogle Scholar
  118. Nappi AJ, Vass E, Frey F, Carton Y (1995) Superoxide anaion generation in drosphila during melanotic encapsulation of parasites. Eur J Cell Biol 68:450–456PubMedGoogle Scholar
  119. Nikapitiya C, Zoysa MD, Lee J (2008) Molecular characterization and gene expression analysis of a pattern recognition protein from disk abalone, Haliotis discus discus. Fish Shellfish Immunol 25(5):638–647PubMedCrossRefGoogle Scholar
  120. Nikl L, Albright LJ, Evelyn TPT (1991) Influence of seven immunostimulants on the immune response of coho salmon to Aeromonas salmonicida. Dis Aquat Organ 12(1):7–12Google Scholar
  121. Nikl L, Evelyn TPT, Albright LJ (1993) Trials with an orally and immersion-administered beta-1,3 glucan as an immunoprophylactic against Aeromonas salmonicida in juvenile chinook salmon Oncorhynchus tshawytscha. Dis Aquat Organ 17(3):191–196CrossRefGoogle Scholar
  122. Ooi VE, Liu F (2000) Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem 7(7):715–729PubMedCrossRefGoogle Scholar
  123. Ortuno J, Cuesta A, Rodrıguez A, Esteban MA, Meseguer J (2002) Oral administration of yeast, Saccharomyces cerevisiae, enhances the cellular innate immune response of gilthead seabream (Sparus aurata L.). Vet Immunol Immunopathol 85:41–50PubMedCrossRefGoogle Scholar
  124. Pais R, Khushiramani R, Karunasagar I, Karunasagar I (2008) Effect of immunostimulants on the haemolymph haemagglutinins of tiger shrimp Penaeus monodon. Aquacult Res 39(12):1339–1345CrossRefGoogle Scholar
  125. Pal D, Joardar SN, Roy B, Kumar S (2007) Yeast cell wall preparation from Saccharomyces cerevisiae provides protection in Indian major carp, Labeo rohita. J Immunol Immunopathol 9(1&2):43–49Google Scholar
  126. Palic D, Andreasen CB, Herolt DM, Menzel BW, Roth JA (2006) Immunomodulatory effects of β-glucan on neutrophil function in fathead minnows (Pimephales promelas Rafinesque, 1820). Dev Comp Immunol 30(9):817–830PubMedCrossRefGoogle Scholar
  127. Patterson JA, Burkholder K (2003) Application of prebiotics and probiotics in poultry production. Poult Sci 82:627–631PubMedGoogle Scholar
  128. Paulsen SM, Engstad RE, Robertsen B (2001) Enhanced lysozyme production in Atlantic salmon (Salmo salar L.) macrophages treated with yeast β-glucan and bacterial lipopolysaccharide. Fish Shellfish Immunol 11:23–37PubMedCrossRefGoogle Scholar
  129. Pearson A, Lux A, Kreieger M (1995) Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila melanogaster. Proc Natl Acad Sci USA 92:4056–4060PubMedCrossRefGoogle Scholar
  130. Peiser L, Gordon S (2001) The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation. Microbes Infect 3:149–159PubMedCrossRefGoogle Scholar
  131. Pick ME, Hawrysh ZJ, Gee MI (1996) Oat bran concentrate bread products improve long-term control of diabetes: a pilot study. J Am Diet Assoc 96:1254–1261PubMedCrossRefGoogle Scholar
  132. Raa J (2000) The use of immune-stimulants in fish and shellfish feeds. In: Cruz-Suarez LE, Ricque-Marie D, Tapia-Salazar M, Olvera-Novoa MA, Civera-Cerecedo R (eds) Advance en Nutricion Acuicola V. Memorias del V Simposium Internacional de Nutrcion Acouicola, vol Memorias. Merida, Yucatan, pp 47–56Google Scholar
  133. Raa J, Roestad G, Engstad RE, Robertsen B (1992) The use of immunostimulants to increase resistance of aquatic organism to microbial infections. In: Shariff IM, Subasinghe RP, Arthur JR (eds) Diseases in Asian aquaculture. Health Fish Section, Asian Fisheries Society, Manila, pp 39–50Google Scholar
  134. Rawles SD, Kocabas A, Gatlin DM III, Du WX, Wei CI (1997) Dietary supplementation of Terramycin and Romet-30 does not enhance growth of channel catfish but does influence tissue residues. J World Aquac Soc 28:392–401CrossRefGoogle Scholar
  135. Reese AJ, Yoneda A, Breger BA, Beauvais A, Liu H, Griffith CL, Bose I, Kim M, Skau C, Yang S, Sefko JA, Osumi M, Latge JP, Mylonakis E, Doering TL (2007) Loss of cell wall alpha(1–3) glucan affects Cryptococcus neoformans from ultrastructure to Virulence. Mol Microbiol 63(5):1385–1398PubMedCrossRefGoogle Scholar
  136. Rice PJ, Kelley JL, Kogan G, Ensley HE, Kalbfleisch HJ, Browder IW (2002) Human monocyte scavenger receptors are pattern recognition receptors for (1 → 3)-{beta}-d-glucans. J Leukoc Biol 72:140–146PubMedGoogle Scholar
  137. Ringø E, Olsen RE, Gonzales Vecino JL, Wadsworth S, Song SK (2012) Use of immunostimulants and nucleotides in aquaculture: a review. J Mar Sci Res Dev 2(1):104. doi:10.4172/2155-9910.1000104 Google Scholar
  138. Robertsen B (1999) Modulation of the non-specific defense of fish by structurally conserved microbial polymers. Fish Shellfish Immunol 9:269–290CrossRefGoogle Scholar
  139. Robertsen B, Engstad RE, Jorgensen JB (1994) Beta-glucans as immunostimulants. In: Stolen J, Fletcher TC (eds) Modulators of fish immune response. SOS Publications, Fair Haven, pp 83–99Google Scholar
  140. Rodregeuz J, Espinosa Y, Echeverrca F, CcLrdenas G, RomcLn R, Stern S (2007) Exposure to probiotics and o-1,3/1,6 glucan in larviculture modifies the immune response of Penaeus vannaemi juveniles and both the survival to WSSV challenge and pond culture. Aquaculture 273(4):405–415CrossRefGoogle Scholar
  141. Rodríguez A, Cuesta A, Ortuño J, Esteban MA, Meseguer J (2003) Immunostimulant properties of a cell wall-modified whole Saccharomyces cerevisiae strain administered by diet to seabream (Sparus aurata L.). Vet Immunol Immunopathol 96(3–4):183–192PubMedCrossRefGoogle Scholar
  142. Rodríguez I, Chamorro R, Novoa B, Figueras A (2009) beta-Glucan administration enhances disease resistance and some innate immune responses in zebrafish (Danio rerio). Fish Shellfish Immunol 27(2):369–373PubMedCrossRefGoogle Scholar
  143. Romagne F (2007) Current and future drugs targeting one class of innate immunity receptors: the toll-like receptors. Drug Discov Today 12:80–87PubMedCrossRefGoogle Scholar
  144. Romalde JL, Magarinos B, Toranzo AE (1999) Prevention of streptococcosis in turbot by intraperitoneal vaccination: a review. J Appl Ichthyol 15:153–158CrossRefGoogle Scholar
  145. Romo-Figuero MG, Vargas-Requena C, Sotelo-Mundo RR, Vargas-Albores F, Higuera-Ciapara I, Söderhäll K, Yepiz-Plascencia G (2004) Molecular cloning of a β-glucan pattern-recognition lipoprotein from the white shrimp Penaeus (Litopenaeus) vannamei: correlations between the deduced amino acid sequence and the native protein structure. Dev Comp Immunol 28(7–8):713–726CrossRefGoogle Scholar
  146. Rørstad G, Aasjord PM, Robertsen B (1993) Adjuvant effect of a yeast glucan in vaccines against furunculosis in Atlantic salmon (Salmo salar L). Fish Shellfish Immunol 3:179–190CrossRefGoogle Scholar
  147. Russo R, Yanong RPE, Mitchel H (2006) Dietary beta-glucans and nucleotide enhance resistance of Red—Tail Black shark (Epalzeorhynchos bicolor, fam. Cyprinidae) to Streptococcus iniae infection. J World Aquac Soc 37(3):298–306CrossRefGoogle Scholar
  148. Sahoo PK (2007) Role of immunostimulants in disease resistance of fish. CAB reviews: perspectives in agriculture. Vet Sci Nutr Nat Res 2: no. 045Google Scholar
  149. Sahoo PK, Mukherjee SC (2001) Effect of dietary b-1,3 glucan on immune response and disease resistance of healthy and aflatoxin B1-induced immunocompromised rohu (Labeo rohita Hamilton). Fish Shellfish Immunol 11:683–695PubMedCrossRefGoogle Scholar
  150. Sahoo PK, Mukherjee SC (2002) The effect of dietary immunomodulation upon Edwardsiella tarda vaccination in healthy and immunocompromised Indian major carp (Labeo rohita). Fish Shellfish Immunol 12:1–16PubMedCrossRefGoogle Scholar
  151. Sajeevan TP, Philip R, Singh BIS (2009) Dose/frequency: a critical factor in the administration of glucan as immunostimulant to Indian white shrimp Fenneropenaeus indicus. Aquaculture 287(3–4):248–252CrossRefGoogle Scholar
  152. Sakai M (1999) Current research status of fish immunostimulants. Aquaculture 172:63–92CrossRefGoogle Scholar
  153. Salze G, McLean E, Schwarz MH, Craig SR (2008) Dietary mannan oligosaccharide enhances salinity tolerance and gut development of larval cobia. Aquaculture 274:148–152CrossRefGoogle Scholar
  154. Samuel M, Lam TJ, Sin YM (1996) Effect of Laminaran [β(1,3)-d-Glucan] on the protective immunity of blue gourami, Trichogaster trichopterus against Aeromonas hydrophila. Fish Shellfish Immunol 6(6):443–454CrossRefGoogle Scholar
  155. Sang HM, Ky LT, Fotedar R (2009) Dietary supplementation of mannan oligosaccharide improves the immune responses and survival of marron, Cherax tenuimanus (Smith, 1912) when challenged with different stressors. Fish Shellfish Immunol 27:341–348PubMedCrossRefGoogle Scholar
  156. Santarém M, Novoa B, Figueras A (1997) Effects of β-glucans on the non-specific immune responses of turbot (Scophthalmus maximus L.). Fish Shellfish Immunol 7(6):429–437CrossRefGoogle Scholar
  157. Scholz U, Garcia Diaz G, Ricque D, Cruz Suarez LE, Vargas Albores F, Latchford J (1999) Enhancement of vibriosis resistance in juvenile Penaeus vannamei by supplementation of diets with different yeast products. Aquaculture 176:271–283CrossRefGoogle Scholar
  158. Sealey WM, Barrows FT, Johansen KA, Overturf K, LaPatra SE, Hardy RW (2007) Evaluation of the ability of partially autolyzed yeast and grobiotic-a to improve disease resistance in rainbow trout. N Am J Aquac 69:400–406CrossRefGoogle Scholar
  159. Sealey WM, Barrows FT, Hang A, Johansen KA, Overturf K, LaPatra SE, Hardy RW (2008) Evaluation of the ability of barley genotypes containing different amount of β-glucan to alter growth and disease resistance of rainbow trout (Oncorhynchus mykiss). Ani Feed Sci Tech 141(1–2):115–128CrossRefGoogle Scholar
  160. Secombes CJ, Hardie LJ, Daniels G (1996) Cytokines in fish: an update. Fish Shellfish Immunol 6:291–304CrossRefGoogle Scholar
  161. Selvaraj V, Sampath K, Sekar V (2005) Administration of yeast glucan enhances survival and some non-specific and specific immune parameters in carp (Cyprinus carpio) infected with Aeromonas hydrophila. Fish Shellfish Immunol 19(4):293–306PubMedCrossRefGoogle Scholar
  162. Selvaraj V, Sampath K, Sekar V (2006) Adjuvant and immunostimulatory effects of β-glucan administration in combination with lipopolysaccharide enhances survival and some immune parameters in carp challenged with Aeromonas hydrophila. Vet Immunol Immunopathol 114:15–24PubMedCrossRefGoogle Scholar
  163. Shelby RA, Lim CE, Aksoy M, Welker TL, Klesius PH (2007) Effects of yeast subcomponents diet supplements on growth, stress resistance and immune response in Nile tilapia. In: 32nd Fish and feed nutrition workshop. Auburn University, AuburnGoogle Scholar
  164. Shelby RA, Lim C, Yildirim-Aksoy M, Welker TL, Klesius PH (2009) Effects of yeast oligosaccharide diet supplements on growth, and disease resistance in Nile tilapia, Oreochromis niloticus. J Appl Aquac 21:61–71CrossRefGoogle Scholar
  165. Sink TD, Lochmann RT (2008) Preliminary observations of mortality reduction in stressed, Flavobacterium columnare—challenged golden shiners after treatment with a dairy-yeast prebiotic. N Am J Aquac 70:192–194CrossRefGoogle Scholar
  166. Siwicki AK, Morand M, Terech-Majevska E, Niemczuk W, Kazun K, Glabsky E (1998) Influence of immunostimulant on the effectiveness of vaccines in fish: in vitro and in vivo study. J Appl Ichthyol 14:225–227CrossRefGoogle Scholar
  167. Siwicki AK, Kazuń K, Gtabski E, Terech-Majewska E, Baranowski P, Trapkowska S (2004) The effect of beta-1.3/1.6—glucan in diets on the effectiveness of anti-yersinia ruckeri vaccine—an experimental study in rainbow trout (Oncorhynchus mykiss). Pol J Food Nutr Sci 13–54: SI 2, 69–61Google Scholar
  168. Skjæveland I, Iliev DB, Zou J, Jørgensen T, Jorgensen JB (2008) A TLR9 homolog that is up-regulated by IFN-γ in Atlantic salmon (Salmo salar). Dev Comp Immunol 32(6):603–607PubMedCrossRefGoogle Scholar
  169. Skjæveland I, Iliev DB, Strandskog G, Jorgensen JB (2009) Identification and characterization of TLR8 and MyD88 homologs in Atlantic salmon (Salmo salar). Dev Comp Immunol 33:1011–1017PubMedCrossRefGoogle Scholar
  170. Skjermo J, Storseth TR, Hansen K, Handa A, Oie G (2006) Evaluation of beta-(1–3,1–6)-glucans and high-M alginate used as immunostimulatory dietary supplement during first feeding and weaning of Atlantic cod (Gadus morhua L.). Aquaculture 261:1088–1101CrossRefGoogle Scholar
  171. Soderhall K (1981) Fungal cell wall β-1,3-glucans induce protein and phenoloxidase attachment to foreign service of crayfish haemocyte lysate. Dev Comp Immunol 5:565–573PubMedGoogle Scholar
  172. Soderhall K (1982) Prophenoloxidase activating system melanisation- a recognition system of arthropods? A review. Dev Comp Immunol 6:601–611PubMedGoogle Scholar
  173. Soderhall K, Cerenius L (1998) Role of the phenoloxidase activating system in invertebrate immunity. Curr Opin Immunol 10:23–28PubMedCrossRefGoogle Scholar
  174. Soderhall K, Aspam A, Duvic B (1990) The proPO system and associated proteins role in cellular communication in arthropods. Res Immunol 141:896–907PubMedGoogle Scholar
  175. Soderhall K, Cerenius L, Johansson MW (1994) The prophenoloxidase activating system and its role in invertebrate defense. Ann NY Acad Sci 712:155–161PubMedCrossRefGoogle Scholar
  176. Sohn KS, Kim MK, Kim JD, Han IK (2000) The role of immunostimulants in monogastric animal and fish—review. Asian Australas J Anim Sci 13:1178–1187Google Scholar
  177. Soltanian S, Dhont J, Sorgeloos P, Bossoer P (2007a) Influence of different yeast cell-wall mutants on performance and protection against pathogenic bacteria (Vibrio campbellii) in gnotobiotically-grown Artemia. Fish Shellfish Immunol 23(1):141–153PubMedCrossRefGoogle Scholar
  178. Soltanian S, François JM, Dhont J, Arnouts S, Sorgeloos P, Bossier P (2007b) Enhanced disease resistance in Artemia by application of commercial β-glucans sources and chitin in a gnotobiotic Artemia challenge test. Fish Shellfish Immunol 23(6):1304–1314PubMedCrossRefGoogle Scholar
  179. Soltanian S, Stuyven E, Cox E, Sorgeloos P, Bossoer P (2009) β-Glucan as immunostimulant in vertebrates and invertebrates. Crit Rev Microbiol 35(2):109–138PubMedCrossRefGoogle Scholar
  180. Song YL, Hsieh YT (1994) Immunostimulation of tiger shrimp Penaeus monodon hemocytes for generation of microbial substances: analysis of reactive oxygen species. Dev Comp Immunol 18:201–209PubMedCrossRefGoogle Scholar
  181. Sritunyalucksana K, Soderhall K (2000) The proPO clotting system in crustacean. Aquaculture 191:53–69CrossRefGoogle Scholar
  182. Sritunyalucksana K, Sithisarin P, Whitayachumnarnkul B, Flegel TW (1999) Activation of prophenoloxidase, agglutinin and antibacterial activity in haemolymph of the black tiger prawn, Penaeus monodon, by immunostimulants. Fish Shellfish Immunol 9:21–30CrossRefGoogle Scholar
  183. Sritunyalucksana K, Lee SY, Soderhall K (2002) A β-1,3-glucan binding protein from the black tiger shrimp Penaeus monodon. Dev Comp Immunol 26:237–245PubMedCrossRefGoogle Scholar
  184. Stafford JL, Ellestad KK, Magor E, Belosevic M, Magor BG (2003) A toll-like receptor (TLR) gene that is up-regulated in activated goldfish macrophages. Dev Comp Immunol 27(8):685–698PubMedCrossRefGoogle Scholar
  185. Su J, Jang S, Yang C, Wang Y, Zhu Z (2009a) Genomic organization and expression analysis of toll-like receptor 3 in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 27:433–439PubMedCrossRefGoogle Scholar
  186. Su J, Yang C, Xiong F, Wang Y, Zhu Z (2009b) Toll-like receptor 4 signaling pathway can be triggered by grass carp reovirus and Aeromonas hydrophila infection in rare minnow Gobiocypris rarus. Fish Shellfish Immunol 27(1):33–39PubMedCrossRefGoogle Scholar
  187. Sugumaran M (1991) Molecular mechanisms for mammalian melanogenesis. Comparison with insect circular sclerotization. FEBS Lett 295:233–239PubMedCrossRefGoogle Scholar
  188. Sung HH, Kou GH, Song YL (1994) Vibriosis resistance induced by glucan treatment in tiger shrimp (Penaeus monodon). Fish Pathol 29:11–17CrossRefGoogle Scholar
  189. Suphantharika MP, Khunrae P, Thanardkit P, Verduyn C (2003) Preparation of spent brewer’s yeast β-glucans with a potential application as an immunostimulant for black tiger shrimp, Penaeus monodon. Bioresour Technol 88(1):55–60PubMedCrossRefGoogle Scholar
  190. Takano T, Kondo H, Hirono I, Endo M, Saito-Taki T, Aoki T (2007) Molecular cloning and characterization of toll-like receptor 9 in Japanese flounder, Paralichthys olivaceus. Mol Immunol 44(8):1845–1853PubMedCrossRefGoogle Scholar
  191. Taylor PR, Brown GD, Reid DM, Willment JA, Martinez- Pomares L, Gordon S (2002) The β-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 169:3876–3882PubMedGoogle Scholar
  192. Teas J (1983) The dietary intake of Laminarin, a brown seaweed, and breast cancer prevention. Nutr Cancer 4(3):217–222PubMedCrossRefGoogle Scholar
  193. Teunissen OSP, Faber R, Booms GHR, Latscha T, Boon JH (1998) Influence of vaccination on vibriosis resistance of giant black tiger shrimp Penaeus monodon (Fabricius). Aquaculture 164:359–366CrossRefGoogle Scholar
  194. Thanardkit P, Khunrae P, Suphantharika M, Verduyn C (2002) Glucan from spent brewer’s yeast: preparation, analysis and use as a potential immunostimulant in shrimp feed. World J Microbiol Biotechnol 18(6):527–539CrossRefGoogle Scholar
  195. Thornton BP, Vetvicka V, Ross GD (1996a) Function of C3 in a humoral response: iC3b/C3dg bound to an immune complex generated with natural antibody and a primary antigen promotes antigen uptake and the expression of co-stimulatory molecules by all B cells, but only stimulates immunoglobulin synthesis by antigen-specific B cells. Clin Exp Immunol 104(3):531–537PubMedCrossRefGoogle Scholar
  196. Thornton BP, Vetvicka V, Pitman M, Goldman RC, Ross GD (1996b) Analysis of the sugar specificity and molecular location of the β-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol 156:1235–1246PubMedGoogle Scholar
  197. Tokunaka K, Ohno N, Adachi Y, Tanaka S, Tamura H, Yadomae T (2000) Immunopharmacological and immunotoxicological activities of a water-soluble (1 → 3)-β-glucan, CSBG from Candida spp. Int J Immunopharmacol 22(5):383–394PubMedCrossRefGoogle Scholar
  198. Uematsu S, Akira S (2006) Toll-like receptors and innate immunity. J Mol Med 84:712–725PubMedCrossRefGoogle Scholar
  199. Vargas-Albores F, Yepiz-Plascencia G (2000) Beta glucan binding protein and its role in shrimp immune response. Aquaculture 191:13–21CrossRefGoogle Scholar
  200. Vargas-Albores F, Jiménez-Vega F, Soderhall K (1996) A plasma protein isolated from brown shrimp Penaeus californiensis, which enhances the activation of prophenoloxidase system by β-1,3-glucan. Dev Comp Immunol 20:299–306PubMedCrossRefGoogle Scholar
  201. Verburg van Kemenade BM, Weyts FAA, Debets R, Flik G (1995) Tilapia macrophages and neutrophilic granulocytes secrete an interleukin 1-like factor. Dev Comp Immunol 19:59–70PubMedCrossRefGoogle Scholar
  202. Vereschagin EI, Van Lambalgen AA, Dushkin MI, Schwartz YS, Polyakov L, Heemskerk A, Huisman E, Thijs LG, Van den Bos GC (1998) Soluble glucan protects against endotoxin shock in the rat: the role of the scavenger receptor. Shock 9:193–198PubMedCrossRefGoogle Scholar
  203. Verlhac V, Obach A, Gabaudan J, Schuep W, Hole R (1998) Immunomodulation by dietary vitamin C and glucan in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 8(6):409–424CrossRefGoogle Scholar
  204. Vetvicka V, Thornton BP, Ross GD (1996) Soluble beta-glucan polysaccharide binding to the lectin site of neutrophils or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J Clin Investig 98:50–61PubMedCrossRefGoogle Scholar
  205. Volman JJ, Ramakers JD, Plat J (2008) Dietary modulation of immune function by β-glucans. Physiol Behavior 94:276–284CrossRefGoogle Scholar
  206. Wang WS, Wang DH (1997) Enhancement of the resistance of tilapia and grass carp to experimental Aeromonas hydrophila and Edwardsiella tarda infections by several polysaccharides. Comp lmmun Microbiol Infect Dis 20(3):261–270CrossRefGoogle Scholar
  207. Wang WS, Hung SW, Lin YH, Tu CY, Wong ML (2007a) The effect of five different glycans on innate immune responses by phagocytes of hybrid tilapia and Japanese Eels Anguilla japonica. J Aquat Anim Health 19:45–59Google Scholar
  208. Wang YC, Chang PS, Chen HY (2007b) Tissue expressions of nine genes important to immune defence of the Pacific white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 23:1161–1177PubMedCrossRefGoogle Scholar
  209. Wang YC, Chang PS, Chen HY (2008) Differential time-series expression of immune-related genes of Pacific white shrimp Litopenaeus vannamei in response to dietary inclusion of β-1,3-glucan. Fish Shellfish Immunol 24(1):113–121PubMedCrossRefGoogle Scholar
  210. Wasser SP, Weis AL (1999) Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 19(1):65–96PubMedGoogle Scholar
  211. Welker TL, Lim C, Yildrim-Aksoy M, Shelby R, Klesius PH (2007) Immune response and resistance to stress and Edwardsiella ictaluri challenge in channel catfish, Ictalurus punctatus, fed diets containing commercial whole-cell or yeast subcomponents. J World Aquac Soc 38:24–35CrossRefGoogle Scholar
  212. Whittington R, Lim C, Klesius PH (2005) Effect of dietary β-glucan levels on the growth response and efficacy of Streptococcus iniae vaccine in Nile tilapia, Oreochromis niloticus. Aquaculture 248:217–225CrossRefGoogle Scholar
  213. Wood PJ (1990) Physicochemical properties and physiological effects of the (1–3) (1–4)-beta-d-glucan from oats. Adv Exp Med Biol 270:119–127PubMedCrossRefGoogle Scholar
  214. Xu B, Wang Y, Li J, Lin Q (2009) Effect of prebiotic xylooligosaccharides on growth performances and digestive enzyme activities of allogynogenetic crucian carp (Carassius auratus gibelio). Fish Physiol Biochem 35:351–357PubMedCrossRefGoogle Scholar
  215. Yadav M, Schorey JS (2006) The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108:3168–3175PubMedCrossRefGoogle Scholar
  216. Yeh MS, Lai CY, Liu CH, Kuo CM, Cheng W (2009) A second proPO present in white shrimp Litopenaeus vannamei and expression of the proPOs during a Vibrio alginolyticus injection, molt stage, and oral sodium alginate ingestion. Fish Shellfish Immunol 26(1):49–55PubMedCrossRefGoogle Scholar
  217. Yoo G, Lee S, Kim CY, Okorei EO (2007) Effect of dietary β-1,3 glucan and feed stimulants in juvenile olive flounder, Paralichthys olivaceus. J World Aquac Soc 38(1):138–145CrossRefGoogle Scholar
  218. Yoshida T, Kruger R, Inglis V (1995) Augmentation of nons-pecific protection in African catfish, Clarias gariepinus (Burchell), by long term oral administration of immunostimulants. J Fish Dis 18:195–198CrossRefGoogle Scholar
  219. Yu Y, Zhong Q, Li C, Jiang L, Yan F, Wang Z, Zhang Q (2009) Isolation and characterization of Toll-like receptor 9 in half-smooth tonguesole Cynoglossus semilaevis. Fish Shellfish Immunol 26:492–499PubMedCrossRefGoogle Scholar
  220. Zelinkoff JT, Enane NA, Bowser D, Squibb KS (1990) Fish macrophage 1: Development of a system for detecting immunomodulating effects of environmental pollutants. In: Symposium at the society of environmental toxicology and chemistry, 11th annual meeting, Arlington, p. 86Google Scholar
  221. Zhang Z, Swain T, Bøgwald J, Dalmo RA, Kumari J (2009) Bath immunostimulation of rainbow trout (Oncorhynchus mykiss) fry induces enhancement of inflammatory cytokine transcripts, while repeated bath induce no changes. Fish Shellfish Immunol 26(5):677–684PubMedCrossRefGoogle Scholar
  222. Zhao D, Chen L, Qin C, Zhang H, Wu P, Li E, Chen L, Qin J (2009) Molecular cloning and characterization of the lipopolysaccharide and β-1, 3-glucan binding protein in Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol B: Biochem Mol Biol 154(1):17–24CrossRefGoogle Scholar
  223. Zimmerman JW, Lindermuth J, Fish PA, Palace GP, Stevenson TT, DeMong DE (1998) A novel carbohydrate glycosphingolipid interaction between a beta-(1–3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. J Biol Chem 273:22014–22020PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • D. K. Meena
    • 1
  • Pronob Das
    • 1
  • Shailesh Kumar
    • 2
  • S. C. Mandal
    • 3
  • A. K. Prusty
    • 4
  • S. K. Singh
    • 2
  • M. S. Akhtar
    • 5
  • B. K. Behera
    • 1
  • Kundan Kumar
    • 2
  • A. K. Pal
    • 2
  • S. C. Mukherjee
    • 2
  1. 1.Central Inland Fisheries Research InstituteKolkataIndia
  2. 2.Central Institute of Fisheries EducationMumbaiIndia
  3. 3.College of FisheriesCentral Agricultural UniversityLembucherraIndia
  4. 4.Project Directorate for Farming System Research (PDFSR)MeerutIndia
  5. 5.Directorate of Coldwater Fisheries ResearchNainitalIndia

Personalised recommendations