Fish Physiology and Biochemistry

, Volume 39, Issue 2, pp 159–169 | Cite as

Effect of guar gum on glucose and lipid metabolism in white sea bream Diplodus sargus

  • P. Enes
  • P. Pousão-Ferreira
  • C. Salmerón
  • E. Capilla
  • I. Navarro
  • J. Gutiérrez
  • A. Oliva-Teles


The aim of this study was to assess the role of soluble non-starch polysaccharide (guar gum) on white sea bream Diplodus sargus, glucose and lipid metabolism. A control diet was formulated to contain 40 % crude protein, 14 % crude lipids and 35 % pregelatinized maize starch, and three other diets were formulated similar to the control diet except for guar gum, which was included at 4 % (diet GG4), 8 % (diet GG8) or 12 % (diet GG12). Diets were fed to the fish for 9 weeks on a pair-feeding scheme. Guar gum had no effect on growth performance, feed efficiency, glycaemia, cholesterolaemia and plasma triacylglyceride levels. Hepatic glucokinase and pyruvate kinase activities, liver glycogen content and liver insulin-like growth factor-I gene expression were not affected by dietary guar gum, while fructose-1,6-bisphosphatase activity was lower in fish fed guar gum–supplemented diets. Hepatic glucose-6-phosphate dehydrogenase activity was higher in fish fed diets GG4 and GG8 than in the control group. Overall, data suggest that in contrast to mammals guar gum had no effect on white sea bream glucose utilization and in lowering plasma cholesterol and triacylglyceride levels. However, it seems to contribute to lower endogenous glucose production.


Glucose metabolism Guar gum Lipid metabolism Soluble non-starch polysaccharides White sea bream 



The present work was supported by Fundação para a Ciência e a Tecnologia (pluriannual funding) through the PIDDAC Program funds from the Portuguese government and by funds from the Spanish Government (AGL2008-00783 and AGL 2009-12427). The first author was supported by a grant (BPD/39688/2007) from Fundação para a Ciência e a Tecnologia, Portugal. We would like to express our thanks to Mr. P. Correia for the technical assistance during the trial.


  1. Abellan E, Basurco BE (1999) Marine finfish diversification: current situation and prospects in Mediterranean aquaculture. In: Abellan E, Basurco BE (eds) Options Mediterraneennes, No. 24. CIHEAM, ZaragozaGoogle Scholar
  2. Aksnes A, Hope B, Jonsson E, Bjornsson BT, Albrektsen S (2006) Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed high plant protein diets. I: growth, growth regulation and feed utilization. Aquaculture 261:305–317. doi: 10.1016/j.aquacultue.2006.07.025 CrossRefGoogle Scholar
  3. Amirkolaie AK, Leenhouwers JI, Verreth JAJ, Schrama JW (2005) Type of dietary fibre (soluble versus insoluble) influences digestion, faeces characteristics and faecal waste production in Nile tilapia (Oreochromis niloticus L.). Aquacult Res 36:1157–1166. doi: 10.1111/j.1365-2109.2005.01330.x CrossRefGoogle Scholar
  4. Beutler HO (1984) Starch. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 6. Verlag Chemie Weinheim, Basel, pp 2–10Google Scholar
  5. Borrebaek B, Christophersen B (2000) Hepatic glucose phosphorylating activities in perch (Perca fluviatilis) after different dietary treatments. Comp Biochem Physiol 125 B:387–393. doi: 10.1016/S0305-0491(99)00185-6 Google Scholar
  6. Bouraoui L, Capilla E, Gutierrez J, Navarro I (2010) Insulin and insulin-like growth factor I signaling pathways in rainbow trout (Oncorhynchus mykiss) during adipogenesis and their implication in glucose uptake. Am J Physiol Regul Integr Comp Physiol 299:R33–R41. doi: 10.1152/ajpregu.00457.2009 PubMedCrossRefGoogle Scholar
  7. Brenelli SL, Campos SDS, Saad MJA (1997) Viscosity of gums in vitro and their ability to reduce postprandial hyperglycemia in normal subjects. Braz J Med Biol Res 30:1437–1440. doi: 10.1590/S0100-879X1997001200009 PubMedCrossRefGoogle Scholar
  8. Brinker A (2007) Guar gum in rainbow trout (Oncorhynchus mykiss) feed: the influence of quality and dose on stabilisation of faecal solids. Aquaculture 267:315–327. doi: 10.1016/j.aquaculture.2007.02.037 CrossRefGoogle Scholar
  9. Brinker A (2009) Improving the mechanical characteristics of faecal waste in rainbow trout: the influence of fish size and treatment with a non-starch polysaccharide (guar gum). Aquacult Nutr 15:229–240. doi: 10.1111/j.1365-2095.2008.00587.x CrossRefGoogle Scholar
  10. Brinker A, Koppe W, Rosch R (2005) Optimizing trout farm effluent treatment by stabilizing trout feces: a field trial. N Am J Aqualcult 67:244–258. doi: 10.1577/A04-078.1 CrossRefGoogle Scholar
  11. Butt MS, Shahzadi N, Sharif MK, Nasir M (2007) Guar gum: a miracle therapy for hypercholesterolemia, hyperglycemia and obesity. Crit Rev Food Sci Nutr 47:389–396. doi: 10.1080/10408390600846267 PubMedCrossRefGoogle Scholar
  12. Cameron-Smith D, Habito R, Barnett M, Collier GR (1997) Dietary guar gum improves insulin sensitivity in Streptozotocin-induced rats. J Nutr 127:359–364PubMedGoogle Scholar
  13. Castillo J, Codina M, Martínez ML, Navarro I, Gutiérrez J (2004) Metabolic and mitogenic effects of IGF-I and insulin on muscle cells of rainbow trout. Am J Physiol Regul Integr Comp Physiol 286:R935–R941. doi: 10.1152/ajpregu.00459.2003 PubMedCrossRefGoogle Scholar
  14. Chawla R, Patil GR (2010) Soluble dietary fiber. Comp Rev Food Sci Food Safety 9:178–196CrossRefGoogle Scholar
  15. Codina M, de la Serrana DG, Sanchez-Gurmaches J, Montserrat N, Chistyakova O, Navarro I, Gutiérrez J (2008) Metabolic and mitogenic effects of IGF-II in rainbow trout (Oncorhynchus mykiss) myocytes in culture and the role of IGF-II in the PI3 K/Akt and MAPK signaling pathways. Gen Comp Endocrinol 157:116–124. doi: 10.1016/j.ygcen.2008.04.009 PubMedCrossRefGoogle Scholar
  16. Ellis PR, Roberts FG, Low AG, Morgan LM (1995) The effect of high-molecular-weight guar gum on net apparent glucose absorption and net apparent insulin and gastric inhibitory polypeptid production in the growing pig: relationship to rheological changes in jejunal digesta. Br J Nutr 74:539–556. doi: 10.1079/BJN19950157 PubMedCrossRefGoogle Scholar
  17. Enes P, Panserat S, Kaushik S, Oliva-Teles A (2006) Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles. Comp Biochem Physiol 143A:89–96. doi: 10.1016/j.cbpa.2005.10.027 Google Scholar
  18. Enes P, Panserat S, Kaushik S, Oliva-Teles A (2008) Growth performance and metabolic utilization of diets with native and waxy maize starch by gilthead sea bream (Sparus aurata) juveniles. Aquaculture 274:101–108. doi: 10.1016/j.aquaculture.2007.11.009 CrossRefGoogle Scholar
  19. Enes P, Panserat S, Kaushik S, Oliva-Teles A (2009) Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol Biochem 35:519–539. doi: 10.1007/s10695-008-9259-5 PubMedCrossRefGoogle Scholar
  20. Enes P, Panserat S, Kaushik S, Oliva-Teles A (2011a) Dietary carbohydrate utilization by European sea bass (Dicentrarchus labrax L.) and gilthead sea bream (Sparus aurata L.) juveniles. Rev Fish Sci 19:201–215. doi: 10.1080/10641262.2011.579363 Google Scholar
  21. Enes P, Peres H, Sanchez-Gurmaches J, Navarro I, Gutiérrez J, Oliva-Teles A (2011b) Insulin and IGF-I response to a glucose load in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 315:321–326. doi: 10.1016/j.aquaculture.2011.02.042 CrossRefGoogle Scholar
  22. Enes P, Peres H, Pousão-Ferreira P, Sanchez-Gurmaches J, Navarro I, Gutiérrez J, Oliva-Teles A (2012) Glycemic and insulin responses in white sea bream Diplodus sargus, after intraperitoneal administration of glucose. Fish Physiol Biochem. doi: 10.1007/s10695-011-9546-4
  23. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  24. Furuichi M, Yone Y (1981) Change of blood sugar and plasma insulin levels of fishes in glucose tolerance test. Bull Jpn Soc Sci Fish 47:761–764CrossRefGoogle Scholar
  25. Furuichi M, Yone Y (1982) Availability of carbohydrate in nutrition of carp and red sea bream. Bull Jpn Soc Sci Fish 48:945–948CrossRefGoogle Scholar
  26. Furuichi M, Morita K, Yone Y (1983) Effect of carboxymetylcellulose supplement on the absorption of dietary nutrients, and on the levels of blood sugar and plasma amino nitrogen. Bull Jpn Soc Sci Fish 49:1367–1370CrossRefGoogle Scholar
  27. Gallaher DD, Schaubert DR (1990) The effect of dietary fiber type on glycated hemoglobin and renal hypertrophy in the adult diabetic rat. Nutr Res 10:1311–1323. doi: 10.1016/S0271-5317(05)80168-X CrossRefGoogle Scholar
  28. Gómez-Requeni P, Mingarro M, Calduch-Giner JA, Médale F, Martin SAM, Houlihan DF, Kaushik K, Pérez-Sánchez J (2004) Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 232:493–510. doi: 10.1016/S0044-8486(03)00532-5 CrossRefGoogle Scholar
  29. Gómez-Requeni P, Calduch-Giner J, de Celis SVR, Médale F, Kaushik SJ, Pérez-Sánchez J (2005) Regulation of the somatotropic axis by dietary factors in rainbow trout (Oncorhynchus mykiss). Brit J Nutr 94:353–361. doi: 10.1079/BJN20051521 PubMedCrossRefGoogle Scholar
  30. Hemre GI, Mommsen TP, Krogdahl A (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquacult Nutr 8:175–194. doi: 10.1046/j.1365-2095.2002.00200.x CrossRefGoogle Scholar
  31. Hevroy EM, El-Mowafi A, Taylor R, Norberg B, Espe M (2008) Effects of a high plant protein diet on the somatotropic system and cholecystokinin in Atlantic salmon (Salmo salar L.). Comp Biochem Physiol 151A:621–627. doi: 10.1016/j.cbpa.2008.07.026 Google Scholar
  32. Hossain MA, Focken U, Becker K (2001) Effect of soaking and soaking followed by autoclaving of Sesbania seeds on growth and feed utilisation in common carp, Cyprinus carpio L. Aquaculture 203:133–148. doi: 10.1016/S0044-8486(01)00616-0 CrossRefGoogle Scholar
  33. Hossain MA, Focken U, Becker K (2003) Antinutritive effects of galactomannan-rich endosperm of Sesbania (Sesbania aculeata) seeds on growth and feed utilization in tilapia, Oreochromis niloticus. Aquacult Res 34:1171–1179. doi: 10.1046/j.1365-2109.2003.00924.x CrossRefGoogle Scholar
  34. Kovacs EMR, Westerterp-Plantenga MS, Saris WHM, Goossens I, Geurten P, Brouns F (2001) The effect of addition of modified guar gum to a low-energy semi-solid meal on appetite and body weight loss. Int J Obes Relat Metab Disord 25:307–315. doi: 10.1038/sj.ijo.0801546 PubMedCrossRefGoogle Scholar
  35. Kraugerud OF, Penn M, Storebakken T, Refstie S, Krogdahl A, Svihus B (2007) Nutrient digestibilities and gut function in Atlantic salmon (Salmo salar) fed diets with cellulose or non-starch polysaccharides from soy. Aquaculture 273:96–107. doi: 10.1016/j.aquaculture.2007.09.013 CrossRefGoogle Scholar
  36. Kumar V, Makkar HPS, Becker K (2011) Nutritional, physiological and haematological responses in rainbow trout (Oncorhynchus mykiss) juveniles fed detoxified Jatropha curcas kernel meal. Aquacult Nutr 17:451–467. doi: 10.1111/j.1365-2095.2010.00825.x CrossRefGoogle Scholar
  37. Lee JT, Connor-Appleton S, Bailey CA, Cartwright AL (2005) Effects of guar meal by-product with and without β-mannanase hemicell on broiler performance. Poult Sci 84:1261–1267PubMedGoogle Scholar
  38. Leenhouwers JI, Adjei-Boateng D, Verreth JAJ, Schrama JW (2006) Digesta viscosity, nutrient digestibility and organ weights in African catfish (Clarias gariepinus) fed diets supplemented with different levels of a soluble non-starch polysaccharide. Aquacult Nutr 12:111–116. doi: 10.1111/j.1365-2095.2006.00389.x CrossRefGoogle Scholar
  39. Leenhouwers JI, ter Veld M, Verreth JAJ, Schrama JW (2007) Digesta characteristics and performance of African catfish (Clarias gariepinus) fed cereal grains that differ in viscosity. Aquaculture 264:330–341. doi: 10.1016/j.aquaculture.2007.01.003 CrossRefGoogle Scholar
  40. Legate NJ, Bonen A, Moon TW (2001) Glucose tolerance and peripheral glucose utilization in rainbow trout (Oncorhynchus mykiss), American eel (Anguilla rostrata), and black bullhead catfish (Ameiurus melas). Gen Comp Endocrinol 122:48–59. doi: 10.1006/gcen.2001.7620 PubMedCrossRefGoogle Scholar
  41. Lie KK, Hansen AC, Eroldogan OT, Olsvik PA, Rosenlund G, Hemre GI (2011) Expression of genes regulating protein metabolism in Atlantic cod (Gadus morhua L.) was altered when including high diet levels of plant proteins. Aquacult Nutr 17:33–43. doi: 10.1111/j.1365-2095.2009.00704.x Google Scholar
  42. Lin JH, Ho LT, Shiau SY (1995) Plasma glucose and insulin concentration in Tilapia after oral administration of glucose and starch. Fish Sci 61:986–988Google Scholar
  43. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 PubMedCrossRefGoogle Scholar
  44. McDonald DE, Pethick DW, Pluske JR, Hampson DJ (1999) Adverse effects of soluble non-starch polysaccharide (guar gum) on piglet growth and experimental colibacillosis immediately after weaning. Res Vet Sci 67:245–250. doi: 10.1053/rvsc.1999.0315 PubMedCrossRefGoogle Scholar
  45. Moon TW (2001) Glucose intolerance in teleost fish: face or fiction? Comp Biochem Physiol 129B:243–249. doi: 10.1016/S1096-4959(01)00316-5 Google Scholar
  46. Moreira IS, Peres H, Couto A, Enes P, Oliva-Teles A (2008) Temperature and dietary carbohydrate level effects on performance and metabolic utilization of diets in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 274:153–160. doi: 10.1016/j.aquaculture.2007.11.016 CrossRefGoogle Scholar
  47. Morgan LM, Tredger JA, Wright J, Marks V (1990) The effect of soluble-and-insoluble fibre supplementation on post-prandial glucose tolerance, insulin and gastric inhibitory polypeptide secretion in healthy subjects. Br J Nutr 64:103–110. doi: 10.1079/BJN19900013 PubMedCrossRefGoogle Scholar
  48. Moriceau S, Besson C, Levrat MA, Moundras C, Remesy C, Morand C, Demigne C (2000) Cholesterol-lowering effects of guar gum: change in bile acid and intestinal reabsorption. Lipids 35:437–444. doi: 10.1007/s11745-000-542-x PubMedCrossRefGoogle Scholar
  49. NRC (2011) Nutrient requirements of fish and shrimp. National Academies Press, Washington, DCGoogle Scholar
  50. Nunes CS, Malmlof K (1992) Effects of guar gum and cellulose on glucose absorption, hormonal release and hepatic metabolism in the pig. Br J Nutr 68:693–700. doi: 10.1079/BJN19920126 PubMedCrossRefGoogle Scholar
  51. Panserat S, Kaushik SJ (2010) Regulation of gene expression by nutritional factors in fish. Aquacult Res 41:751–762. doi: 10.1111/j.1365-2109.2009.02173.x CrossRefGoogle Scholar
  52. Panserat S, Plagnes-Juan E, Kaushik S (2002) Gluconeogenic enzyme gene expression is decreased by dietary carbohydrates in common carp (Cyprinus carpio) and gilthead seabream (Sparus aurata). Biochim Biophys Acta 1579:35–42. doi: 10.1016/S0167-4781(02)00501-8 PubMedCrossRefGoogle Scholar
  53. Panserat S, Kirchner S, Kaushik S (2007) Nutrigenomics. In: Nakagawa H, Sato M, Gatlin DM (eds) Dietary supplements for the health and quality of cultured fish. CAB International, Wallingford, UK, pp 210–229Google Scholar
  54. Panserat S, Skiba-Cassy S, Seiliez I, Lansard M, Plagnes-Juan E, Vachot C, Aguirre P, Larroquet L, Chavergnac G, Médale F, Corraze G, Kaushik S, Moon TW (2009) Metformin improves postprandial glucose homeostasis in rainbow trout fed dietary carbohydrates: a link with the induction of hepatic lipogenic capacities? Am J Physiol Regul Integr Comp Physiol 297:R707–R715. doi: 10.1152/ajpregu.00120.2009 PubMedCrossRefGoogle Scholar
  55. Plummer P (1987) Glycogen determination in animal tissues. An introduction to practical biochemistry, 3rd edn. McGraw Hill Book, MaidenheadGoogle Scholar
  56. Polakof S, Alvarez R, Soengas JL (2010) Gut glucose metabolism in rainbow trout: implications in glucose homeostasis and glucosensing capacity. Am J Physiol Regul Integr Comp Physiol 299:R19–R32. doi: 10.1152/ajpregu.00005.2010 PubMedCrossRefGoogle Scholar
  57. Polakof S, Panserat S, Soengas JL, Moon TW (2012) Glucose metabolism in fish: a review. J Comp Physiol B. doi: 10.1007/s00360-012-0658-7
  58. Potter SM (1995) Overview of proposed mechanisms for the hypocholesterolemic effect of soy. J Nutr 125:S606–S611Google Scholar
  59. Prieto PG, Cancelas J, Villanueva-Penacarrillo ML, Malaisse WJ, Valverde I (2006) Short-term and long-term effects of guar on postprandial plasma glucose, insulin and glucagon-like peptide 1 concentration in healthy rats. Horm Metab Res 38:397–404. doi: 10.1055/s-2006-944544 PubMedCrossRefGoogle Scholar
  60. Refstie S, Svihus B, Shearer KD, Storebakken T (1999) Nutrient digestibility in Atlantic salmon and broiler chickens related to viscosity and non-starch polysaccharide content in different soyabean products. Anim Feed Sci Technol 79:331–345. doi: 10.1016/S0377-8401(99)00026-7 CrossRefGoogle Scholar
  61. Reid JSG (1985) Galactomannans. In: Dey PM, Dixon RA (eds) Biochemistry of storage carbohydrates in green plants. Academic Press, London, pp 265–288Google Scholar
  62. Sá R, Pousão-Ferreira P, Oliva-Teles A (2007) Growth performance and metabolic utilization of diets with different protein: carbohydrate ratios by white sea bream (Diplodus sargus L.) juveniles. Aquacult Res 38:100–105. doi: 10.111/j.1365-2109.2006.01629.x CrossRefGoogle Scholar
  63. Sá R, Pousão-Ferreira P, Oliva-Teles A (2008) Effect of dietary starch source (normal versus waxy) and protein levels on the performance of white sea bream Diplodus sargus (Linnaeus) juveniles. Aquacult Res 39:1069–1076. doi: 10.1111/j.1365-2109.2008.01967.x CrossRefGoogle Scholar
  64. Seal CJ, Mathers JC (2001) Comparative gastrointestinal and plasma cholesterol responses of rats fed on cholesterol free diets supplemented with guar gum and sodium alginate. Br J Nutr 85:317–324. doi: 10.1079/BJN2000250 PubMedCrossRefGoogle Scholar
  65. Shahzadi N, Butt MS, Sharif MK, Nasir M (2007) Effect of guar gum on the serum lipid profile of Sprague Dawley rats. LWT Food Sci Tecnhol 40:1198–1205. doi: 10.1016/j.lwt.2006.08.007 CrossRefGoogle Scholar
  66. Shiau SY, Yu HL, Hwa S, Chen SY, Hsu SI (1988) The influence of carboxymethylcellulose on growth, digestion, gastric emptying time and body composition of tilapia. Aquaculture 70:345–354. doi: 10.1016/0044-8486(88)90118-4 CrossRefGoogle Scholar
  67. Shiau SY, Kwok CC, Chen CJ, Hong HT, Hsieh HB (1989) Effects of dietary fiber on the intestinal absorption of dextrin, blood sugar level and growth of tilapia, Oreochromis niloticus × O. aureus. J Fish Biol 34:929–935. doi: 10.1111/j.1095-8649.1989.tb03375.x CrossRefGoogle Scholar
  68. Stanley JC, Newsholme EA (1985) The effect of dietary guar gum on the activities of some key enzymes of carbohydrate and lipid metabolism in mouse liver. Br J Nutr 53:215–222. doi: 10.1079/BJN19850029 PubMedCrossRefGoogle Scholar
  69. Stone DAJ (2003) Dietary carbohydrate utilization by fish. Rev Fish Sci 11:337–369CrossRefGoogle Scholar
  70. Storebakken T (1985) Binders in fish feeds. I. Effect of alginate and guar gum on growth, digestibility, feed intake and passage through the gastrointestinal tract of rainbow trout. Aquaculture 47:11–26. doi: 10.1016/0044-8486(85)90004-3 CrossRefGoogle Scholar
  71. Suzuki T, Hara H (2004) Ingestion of guar gum hydrolysate, a soluble and fermentable nondigestible saccharide, improves glucose intolerance and prevents hypertriglyceridemia in rats fed fructose. J Nutr 134:1942–1947PubMedGoogle Scholar
  72. Tiago DM, Laizé V, Cancela ML (2008) Alternatively spliced transcripts of Sparus aurata insulin-like growth factor 1 are differently express in adult tissues and during early development. Gen Comp Endocrinol 157:107–115. doi: 10.1016/j.ygcen.2008.04.006 PubMedCrossRefGoogle Scholar
  73. Tranulis MA, Dregni O, Christophersen B, Krogdahl A, Borrebaek B (1996) A glucokinase-like enzyme in the liver of Atlantic salmon (Salmo salar). Comp Biochem Physiol 114B:35–39. doi: 10.1016/0305-0491(95)02119-1 Google Scholar
  74. Truswell AS, Beynen AC (1992) Dietary fiber and plasma lipids: potential for prevention and treatment of hyperlipidemias. In: Schweizer TF, Edwards CA (eds) Dietary fiber- a component of food. Springer, London, pp 295–332CrossRefGoogle Scholar
  75. Wilson RP (1994) Utilization of dietary carbohydrate by fish. Aquaculture 124:67–80. doi: 10.1016/0044-8486(94)90363-8 CrossRefGoogle Scholar
  76. Wright RS, Anderson JW, Bridges SR (1990) Propionate inhibits hepatocyte lipid synthesis. Proc Soc Exp Biol Med 195:26–29PubMedGoogle Scholar
  77. Yamamoto T, Akiyama T (1995) Effect of carboxymethylcellulose, α-starch, and wheat gluten incorporated in diets as binders on growth, feed efficiency, and digestive enzyme activity of fingerling Japanese flounder. Fish Sci 61:309–313Google Scholar
  78. Yamatoya K, Kuwano K, Suzuki J (1997) Effects of hydrolyzed guar gum on cholesterol and glucose in humans. Food Hydrocolloids 11:239–242. doi: 10.1016/S0268-005X(97)80030-6 CrossRefGoogle Scholar
  79. Yoon SJ, Chu DC, Juneja LR (2006) Physiological functions of partially hydrolyzed guar gum. J Clin Biochem Nutr 39:132–142CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • P. Enes
    • 1
  • P. Pousão-Ferreira
    • 2
  • C. Salmerón
    • 3
  • E. Capilla
    • 3
  • I. Navarro
    • 3
  • J. Gutiérrez
    • 3
  • A. Oliva-Teles
    • 1
    • 4
  1. 1.CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e AmbientalUniversidade do PortoPortoPortugal
  2. 2.IPIMAR/CIMSulOlhãoPortugal
  3. 3.Departament de Fisiologia i Immunologia, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations