Fish Physiology and Biochemistry

, Volume 39, Issue 2, pp 121–130 | Cite as

Purification and characterization of chymotrypsin from viscera of vermiculated sailfin catfish, Pterygoplichthys disjunctivus, Weber, 1991

  • Ana Gloria Villalba-Villalba
  • Juan Carlos Ramírez-SuárezEmail author
  • Ramón Pacheco-Aguilar
  • Elisa Miriam Valenzuela-Soto
  • María Elena Lugo-Sánchez
  • Ciria Guadalupe Figueroa-Soto


Pterygoplichthys disjunctivus viscera chymotrypsin was purified by fractionation with ammonium sulfate (30–70 % saturation), gel filtration, affinity, and ion exchange chromatography. Chymotrypsin molecular weight was approximately 29 kDa according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), shown a single band in zymogram. Electrofocusing study suggested being an anionic enzyme (pI ≈ 3.9), exhibiting maximal activity at pH 9 and 50 °C, using Suc-Ala-Ala-Pro-Phe-p-nitroanilide (SAAPNA) as substrate. Enzyme was effectively inhibited by phenyl methyl sulfonyl fluoride (PMSF) (99 %), and N-tosyl-l-phenylalanine chloromethyl ketone (TPCK) (94 %). Enzyme activity was affected by the following ions in decreasing order: Hg2+, Fe2+, Cu2+, Li1+, Mg2+, K1+, Mn2+, while Ca2+ had no effect. Chymotrypsin activity decreased continuously as NaCl concentration increased (from 0 to 30 %). K m and V max values were 0.72 ± 1.4 mM and 1.15 ± 0.06 μmol/min/mg of protein, respectively (SAAPNA as substrate). Results suggest the enzyme has a potential application where low processing temperatures are needed, such as in fish sauce production.


Chymotrypsin Enzyme purification Pterygoplichthys disjunctivus Viscera 



This study was supported by the Fondo Mixto CONACYT-Gobierno del Estado de Michoacán under the project “Desarrollo Tecnológico para el Aprovechamiento e Industrialización del Pez Diablo en la Región del Bajo Balsas en Michoacán, FOMIX # 37147.”


  1. Ásgeirsson B, Bjarnason JB (1991) Structural and kinetic properties of chymotrypsin from Atlantic cod (Gadus morhua). Comparison with bovine chymotrypsin. Comp Biochem Physiol 99B:327–335Google Scholar
  2. Bender ML, Killheffer JF (1973) Chymotrypsin. CRC Cri Rev Biochem 1(2):149–199CrossRefGoogle Scholar
  3. Bradford M (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  4. Castillo-Yañez F, Pacheco-Aguilar R, Garcia-Carreño F, Toro M, Lopez M (2006) Purification and biochemical characterization of chymotrypsin from the viscera of Monterrey sardine (Sardinops sagax caerulea). Food Chem 99:252–259CrossRefGoogle Scholar
  5. Cohen T, Gertler A, Birk Y (1981) Pancreatic proteolytic enzymes from carp (Cyprinus carpio)-I. Purification and physical properties of trypsin, chymotrypsin, elastase and carboxypeptidase B. Comp Biochem Physiol 69B:639–646Google Scholar
  6. Copeland RA (2000) A practical introduction to structure, mechanism and data Analysis, 2nd edn. Wiley, New YorkGoogle Scholar
  7. El Hadj Ali N, Hmidet N, Zouari-Fakhfakh N, Khaled HB, Nasri M (2010) Alkaline chymotrypsin from striped seabream (Lithognathus mormyrus) viscera: purification and characterization. J Agric Food Chem 58:9787–9792PubMedCrossRefGoogle Scholar
  8. Erlanger BF, Kokowski N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278PubMedCrossRefGoogle Scholar
  9. Fong WP, Chan YM, Lau KK (1998) Isolation of two chymotrypsins from grass carp. Biochem Mol Biol Int 45:409–418PubMedGoogle Scholar
  10. Gibbs M, Shields J, Lock D, Talmadge K, Farrell T (2008) Reproduction in an invasive exotic catfish Pterygoplichthys disjunctivus in Volusia Blue Spring, Florida, USA. J Fish Biol 73:1562–1572CrossRefGoogle Scholar
  11. Haard NF (1998) Speciality enzymes from marine organism. Food Technol 52:64–67Google Scholar
  12. Heu MS, Kim HR, Pyeun JH (1995) Comparison of trypsin and chymotrypsin from the viscera of anchovy (Engraulis japonica). Comp Biochem Physiol 112B:557–567Google Scholar
  13. Jiang YK, Sun LC, Cai QF, Liu GM, Yoshida A, Osatomi K, Cao MJ (2010) Biochemical characterization of chymotrypsin from the hepatopancreas of Japanese sea bass (Lateolabrax japonicus). J Agric Food Chem 58:8069–8076PubMedCrossRefGoogle Scholar
  14. Khaled HB, Jellouni K, Souissi N, Ghorbel S, Barkia A, Nasri M (2011) Purification and characterization of three trypsin isoforms from viscera of sardinelle (Sardinella aurita). Fish Physiol Biochem 37:123–133PubMedCrossRefGoogle Scholar
  15. Klee CB (1988) Interaction of calmodulin with Ca++, and target proteins. In: Cohen P (ed) Molecular aspects of cellular regulations, Calmodulin, vol, chap 3. Elsevier, Amsterdam, pp 35–56Google Scholar
  16. Klomklao S, Benjakul S, Visessanguan W, Simpson BK, Kishimura H (2005) Partitioning and recovery of proteinase from tuna spleen by aqueous two-phase systems. Process Biochem 40:3061–3067CrossRefGoogle Scholar
  17. Klomklao S, Benjakul S, Kishimura H, Chaijan M (2011) 24 kDa trypsin: a predominant protease purified from the viscera of hybrid catfish (Clarias macrocephalus × Clarias gariepinus). Food Chem 129(3):739–746CrossRefGoogle Scholar
  18. Kristjasson MM, Nielsen HH (1992) Purification and characterization of two chymotrypsin-like proteases from the pyloric ceca of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol 101B:247–253Google Scholar
  19. Laemmli U (1970) Cleavage of structural proteins during assembly of the head bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  20. Leth-Larsen R, Asgeirsson B, Thorolfsson M, Norregaard-Madsen M, Hojrup P (1996) Structure of chymotrypsin variant B from Atlantic cod, Gadus morhua. Biochim Biophys Acta 1297:49–56PubMedCrossRefGoogle Scholar
  21. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constant. J Am Chem Soc 56:658–666CrossRefGoogle Scholar
  22. Raae AJ, Flengsrud R, Sletten K (1995) Chymotrypsin isoenzymes in Atlantic Cod; differences in kinetics and substrate specificity. Comp Biochem Physiol 112B:393-398Google Scholar
  23. Raae AJ, Walter BT (1989) Purification and characterization of chymotrypsin, trypsin and elastase like proteinase from cod (Gadus morhua L). Comp Biochem Physiol 93B:317–324Google Scholar
  24. Racicot WF, Hultin HO (1987) A comparison of dogfish and bovine chymotrypsin. Arch Biochem Biophys 252:131–143CrossRefGoogle Scholar
  25. Shahidi F, Kamil JY (2001) Enzymes from fish and aquatic invertebrate and their application in the food industry. Trends Food Sci Technol 12:435–464CrossRefGoogle Scholar
  26. Shahidi F, Han XQ, Synowiecki J (1995) Production and characteristics of protein hydrolysates from capelin (Mallofus villosus). Food Chem 53:285–293CrossRefGoogle Scholar
  27. Simpson BK (2000) Digestive proteases from marine animals. In: Haard N, Simpson B (eds) Seafood enzymes. Marcel Dekker, New York, pp 76–77Google Scholar
  28. Stauffer C (1989) Effect of pH on activity. In: Stauffer C (ed) Enzyme assays for food scientist. Van Nostrand Reinhold, New York, pp 63–117Google Scholar
  29. Ulitina NN, Khablyuk VV, Proskuryakov MT (2005) Purification and properties of serine proteinases from European Catfish Silurus glanis L. pancreas. Appl Biochem Microbiol 41(2):139–144CrossRefGoogle Scholar
  30. Villalba-Villalba AG, Pacheco-Aguilar R, Ramírez-Suárez JC, Valenzuela-Soto EM, Castillo-Yáñez FJ, Márquez Ríos E (2011) Partial characterization of alkaline proteases from viscera of vermiculated sailfin catfish Pterygoplichthys disjunctivus Weber, 1991. Fish Sci 77:697–705CrossRefGoogle Scholar
  31. Whitaker J (1994) Principles of enzymology for the food sciences, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  32. Yang F, Su W, Lu B, Wu T, Sun L, Hara K, Cao M (2009) Purification and characterization of chymotrypsins from the hepatopancreas of crucian carp (Carassius auratus). Food Chem 116:860–866CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ana Gloria Villalba-Villalba
    • 1
  • Juan Carlos Ramírez-Suárez
    • 1
    Email author
  • Ramón Pacheco-Aguilar
    • 1
  • Elisa Miriam Valenzuela-Soto
    • 1
  • María Elena Lugo-Sánchez
    • 1
  • Ciria Guadalupe Figueroa-Soto
    • 1
  1. 1.Centro de Investigación en Alimentación y Desarrollo (CIAD)HermosilloMexico

Personalised recommendations