Skip to main content

Advertisement

Log in

Purification and characterization of chymotrypsin from viscera of vermiculated sailfin catfish, Pterygoplichthys disjunctivus, Weber, 1991

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Pterygoplichthys disjunctivus viscera chymotrypsin was purified by fractionation with ammonium sulfate (30–70 % saturation), gel filtration, affinity, and ion exchange chromatography. Chymotrypsin molecular weight was approximately 29 kDa according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), shown a single band in zymogram. Electrofocusing study suggested being an anionic enzyme (pI ≈ 3.9), exhibiting maximal activity at pH 9 and 50 °C, using Suc-Ala-Ala-Pro-Phe-p-nitroanilide (SAAPNA) as substrate. Enzyme was effectively inhibited by phenyl methyl sulfonyl fluoride (PMSF) (99 %), and N-tosyl-l-phenylalanine chloromethyl ketone (TPCK) (94 %). Enzyme activity was affected by the following ions in decreasing order: Hg2+, Fe2+, Cu2+, Li1+, Mg2+, K1+, Mn2+, while Ca2+ had no effect. Chymotrypsin activity decreased continuously as NaCl concentration increased (from 0 to 30 %). K m and V max values were 0.72 ± 1.4 mM and 1.15 ± 0.06 μmol/min/mg of protein, respectively (SAAPNA as substrate). Results suggest the enzyme has a potential application where low processing temperatures are needed, such as in fish sauce production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ásgeirsson B, Bjarnason JB (1991) Structural and kinetic properties of chymotrypsin from Atlantic cod (Gadus morhua). Comparison with bovine chymotrypsin. Comp Biochem Physiol 99B:327–335

    Google Scholar 

  • Bender ML, Killheffer JF (1973) Chymotrypsin. CRC Cri Rev Biochem 1(2):149–199

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Yañez F, Pacheco-Aguilar R, Garcia-Carreño F, Toro M, Lopez M (2006) Purification and biochemical characterization of chymotrypsin from the viscera of Monterrey sardine (Sardinops sagax caerulea). Food Chem 99:252–259

    Article  Google Scholar 

  • Cohen T, Gertler A, Birk Y (1981) Pancreatic proteolytic enzymes from carp (Cyprinus carpio)-I. Purification and physical properties of trypsin, chymotrypsin, elastase and carboxypeptidase B. Comp Biochem Physiol 69B:639–646

    CAS  Google Scholar 

  • Copeland RA (2000) A practical introduction to structure, mechanism and data Analysis, 2nd edn. Wiley, New York

    Google Scholar 

  • El Hadj Ali N, Hmidet N, Zouari-Fakhfakh N, Khaled HB, Nasri M (2010) Alkaline chymotrypsin from striped seabream (Lithognathus mormyrus) viscera: purification and characterization. J Agric Food Chem 58:9787–9792

    Article  PubMed  CAS  Google Scholar 

  • Erlanger BF, Kokowski N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  PubMed  CAS  Google Scholar 

  • Fong WP, Chan YM, Lau KK (1998) Isolation of two chymotrypsins from grass carp. Biochem Mol Biol Int 45:409–418

    PubMed  CAS  Google Scholar 

  • Gibbs M, Shields J, Lock D, Talmadge K, Farrell T (2008) Reproduction in an invasive exotic catfish Pterygoplichthys disjunctivus in Volusia Blue Spring, Florida, USA. J Fish Biol 73:1562–1572

    Article  Google Scholar 

  • Haard NF (1998) Speciality enzymes from marine organism. Food Technol 52:64–67

    Google Scholar 

  • Heu MS, Kim HR, Pyeun JH (1995) Comparison of trypsin and chymotrypsin from the viscera of anchovy (Engraulis japonica). Comp Biochem Physiol 112B:557–567

    CAS  Google Scholar 

  • Jiang YK, Sun LC, Cai QF, Liu GM, Yoshida A, Osatomi K, Cao MJ (2010) Biochemical characterization of chymotrypsin from the hepatopancreas of Japanese sea bass (Lateolabrax japonicus). J Agric Food Chem 58:8069–8076

    Article  PubMed  CAS  Google Scholar 

  • Khaled HB, Jellouni K, Souissi N, Ghorbel S, Barkia A, Nasri M (2011) Purification and characterization of three trypsin isoforms from viscera of sardinelle (Sardinella aurita). Fish Physiol Biochem 37:123–133

    Article  PubMed  Google Scholar 

  • Klee CB (1988) Interaction of calmodulin with Ca++, and target proteins. In: Cohen P (ed) Molecular aspects of cellular regulations, Calmodulin, vol, chap 3. Elsevier, Amsterdam, pp 35–56

    Google Scholar 

  • Klomklao S, Benjakul S, Visessanguan W, Simpson BK, Kishimura H (2005) Partitioning and recovery of proteinase from tuna spleen by aqueous two-phase systems. Process Biochem 40:3061–3067

    Article  CAS  Google Scholar 

  • Klomklao S, Benjakul S, Kishimura H, Chaijan M (2011) 24 kDa trypsin: a predominant protease purified from the viscera of hybrid catfish (Clarias macrocephalus × Clarias gariepinus). Food Chem 129(3):739–746

    Article  CAS  Google Scholar 

  • Kristjasson MM, Nielsen HH (1992) Purification and characterization of two chymotrypsin-like proteases from the pyloric ceca of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol 101B:247–253

    Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during assembly of the head bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Leth-Larsen R, Asgeirsson B, Thorolfsson M, Norregaard-Madsen M, Hojrup P (1996) Structure of chymotrypsin variant B from Atlantic cod, Gadus morhua. Biochim Biophys Acta 1297:49–56

    Article  PubMed  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constant. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Raae AJ, Flengsrud R, Sletten K (1995) Chymotrypsin isoenzymes in Atlantic Cod; differences in kinetics and substrate specificity. Comp Biochem Physiol 112B:393-398

    Google Scholar 

  • Raae AJ, Walter BT (1989) Purification and characterization of chymotrypsin, trypsin and elastase like proteinase from cod (Gadus morhua L). Comp Biochem Physiol 93B:317–324

    CAS  Google Scholar 

  • Racicot WF, Hultin HO (1987) A comparison of dogfish and bovine chymotrypsin. Arch Biochem Biophys 252:131–143

    Article  Google Scholar 

  • Shahidi F, Kamil JY (2001) Enzymes from fish and aquatic invertebrate and their application in the food industry. Trends Food Sci Technol 12:435–464

    Article  Google Scholar 

  • Shahidi F, Han XQ, Synowiecki J (1995) Production and characteristics of protein hydrolysates from capelin (Mallofus villosus). Food Chem 53:285–293

    Article  CAS  Google Scholar 

  • Simpson BK (2000) Digestive proteases from marine animals. In: Haard N, Simpson B (eds) Seafood enzymes. Marcel Dekker, New York, pp 76–77

    Google Scholar 

  • Stauffer C (1989) Effect of pH on activity. In: Stauffer C (ed) Enzyme assays for food scientist. Van Nostrand Reinhold, New York, pp 63–117

    Google Scholar 

  • Ulitina NN, Khablyuk VV, Proskuryakov MT (2005) Purification and properties of serine proteinases from European Catfish Silurus glanis L. pancreas. Appl Biochem Microbiol 41(2):139–144

    Article  CAS  Google Scholar 

  • Villalba-Villalba AG, Pacheco-Aguilar R, Ramírez-Suárez JC, Valenzuela-Soto EM, Castillo-Yáñez FJ, Márquez Ríos E (2011) Partial characterization of alkaline proteases from viscera of vermiculated sailfin catfish Pterygoplichthys disjunctivus Weber, 1991. Fish Sci 77:697–705

    Article  CAS  Google Scholar 

  • Whitaker J (1994) Principles of enzymology for the food sciences, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Yang F, Su W, Lu B, Wu T, Sun L, Hara K, Cao M (2009) Purification and characterization of chymotrypsins from the hepatopancreas of crucian carp (Carassius auratus). Food Chem 116:860–866

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fondo Mixto CONACYT-Gobierno del Estado de Michoacán under the project “Desarrollo Tecnológico para el Aprovechamiento e Industrialización del Pez Diablo en la Región del Bajo Balsas en Michoacán, FOMIX # 37147.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Ramírez-Suárez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villalba-Villalba, A.G., Ramírez-Suárez, J.C., Pacheco-Aguilar, R. et al. Purification and characterization of chymotrypsin from viscera of vermiculated sailfin catfish, Pterygoplichthys disjunctivus, Weber, 1991. Fish Physiol Biochem 39, 121–130 (2013). https://doi.org/10.1007/s10695-012-9684-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-012-9684-3

Keywords