Skip to main content
Log in

Influence of acclimation temperature on the induction of heat-shock protein 70 in the catfish Horabagrus brachysoma (Günther)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Every organism responds to heat stress by synthesizing a group of evolutionarily conserved proteins called the heat-shock proteins (HSPs) that, by acting as molecular chaperones, protect the cell against the aggregation of denatured proteins and play a significant role in adaptation to temperature. The present study aimed to investigate the critical thermal maxima (CTMax) and the expression of HSP70 in different tissues (gill, brain, muscle and liver) of an endemic catfish Horabagrus brachysoma acclimated at either 20 or 30°C for 30 days. To understand the HSP70 response, fish acclimated to the two temperatures were exposed to preset temperatures (26, 30, 34, 36 and 38°C for 20°C acclimated fish and 32, 34, 36, 38 and 40°C for 30°C acclimated fish) for 2 h, followed by 1 h recovery at their respective acclimation temperatures. The HSP70 levels in the gill, brain, muscle and liver tissues were determined by Western blotting of one-dimensional sodium dodecyl sulphate–polyacrylamide gel electrophoresis. A significant (P < 0.05) increase in the CTMax values was observed for fish acclimated at 30°C (41.86 ± 0.39°C) than those acclimated at 20°C (39.13 ± 0.18°C). HSP70 was detected in all the tissues with the highest level in the liver followed by intermediate levels in muscle and brain, and lowest level in gill tissue, irrespective of the acclimation temperatures (20 or 30°C). The HSP70 levels were significantly higher (P < 0.05) in the tissues of fish acclimated at 30°C than those acclimated at 20°C. The mean induction temperature of HSP70 in all the tissues of fish acclimated at either 20 or 30°C was 30 and 34°C, respectively. The optimum temperature for HSP70 induction in all the tissues of fish acclimated at 20°C was 36°C, whereas for fish acclimated at 30°C was 36°C for gill and 38°C for brain, muscle and liver. Decreased levels of HSP70 were noted in all the tissues of fish when exposed to temperatures that exceeded the optimum temperatures for HSP70 inductions. Overall results indicated that acclimation temperature influences both temperature tolerance and induction of HSP70 in H. brachysoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anvar Ali P, Raghavan R, Prasad G (2007) Threatened fishes of the world: Horabagrus brachysoma (gunther, 1864) (bagridae). Environ Biol Fishes 78:221. doi:10.1007/s10641-006-0022-4

    Article  Google Scholar 

  • Arkush KD, Cherr GN, Clegg JS (2008) Induced thermotolerance and tissue Hsc70 in juvenile coho salmon, Oncorhynchus kisutch. Acta Zool 89:331–338. doi:10.1111/j.1463-6395.2008.00321.x

    Article  Google Scholar 

  • Barua D, Heckathorn SA (2004) Acclimation of the temperature set-points of the heat-shock response. J Therm Biol 29:185–193. doi:10.1016/j.jtherbio.2004.01.004

    Article  Google Scholar 

  • Beitinger TL, Bennett WA (2000) Quantification of the role of acclimation temperature in temperature tolerance of fishes. Environ Biol Fishes 58:277–288. doi:10.1023/A:1007618927527

    Article  Google Scholar 

  • Beitinger TL, Bennett WA, McCauley RW (2000) Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ Biol Fish 58:237–275. doi:10.1023/A:1007676325825

    Article  Google Scholar 

  • Bhat A (2001) New report of the species, Horabagrus brachysoma in the Uttara Kannada district of Karnataka. J Bombay Nat Hist Soc 98:294–296

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Brett JR (1971) Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (oncorhynchus nerkd). Am Zool 11:99–113. doi:10.1093/icb/11.1.99

    Google Scholar 

  • Buckley BA, Owen M, Hofmann GE (2001) Adjusting the thermostat: the threshold induction temperature for the heat-shock response in intertidal mussels (genus Mytilus) changes as a function of thermal history. J Exp Biol 204:3571–3579

    PubMed  CAS  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366. doi:10.1016/S0092-8674(00)80928-9

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee N, Pal AK, Manush SM, Das T, Mukherjee SC (2004) Thermal tolerance and oxygen consumption of labeo rohita and cyprinus carpio early fingerlings acclimated to three different temperatures. J Therm Biol 29:265–270. doi:10.1016/j.jtherbio.2004.05.001

    Article  Google Scholar 

  • Clegg JS, Uhlinger KR, Jackson SA, Cherr GN, Rifkin E, Friedman CS (1998) Induced thermotolerance and the heat shock protein-70 family in the pacific oyster Crassostrea gigas. Mol Mar Biol Biotechnol 7:21–30

    CAS  Google Scholar 

  • Craig EA, Gross CA (1991) Is hsp70 the cellular thermometer? Trends Biochem Sci 16:135–140. doi:10.1016/0968-0004(91)90055-Z

    Article  PubMed  CAS  Google Scholar 

  • Currie S, Moyes CD, Tufts BL (2000) The effects of heat shock and acclimation temperature on hsp70 and hsp30 mRNA expression in rainbow trout: in vivo and in vitro comparisons. J Fish Biol 56:398–408. doi:10.1111/j.1095-8649.2000.tb02114.x

    Article  CAS  Google Scholar 

  • Dalvi RS, Pal AK, Tiwari LR, Das T, Baruah K (2009) Thermal tolerance and oxygen consumption rates of the catfish Horabagrus brachysoma (Günther) acclimated to different temperatures. Aquaculture 295:116–119. doi:10.1016/j.aquaculture.2009.06.034

    Article  Google Scholar 

  • Das T, Pal AK, Chakraborty SK, Manush SM, Chatterjee N, Mukherjee SC (2004) Thermal tolerance and oxygen consumption of Indian major carps acclimated to four temperatures. J Therm Biol 29:157–163. doi:10.1016/j.jtherbio.2004.02.001

    Article  Google Scholar 

  • Das T, Pal AK, Chakraborty SK, Manush SM, Chatterjee N, Apte SK (2006) Metabolic elasticity and induction of heat shock protein 70 in Labeo rohita acclimated to three temperatures. Asian Aust J Anim Sci 19:1033–1039

    CAS  Google Scholar 

  • Debnath D, Pal AK, Sahu NP, Baruah K, Yengkokpam S, Das T, Manush SM (2006) Thermal tolerance and metabolic activity of yellowtail catfish Pangasius pangasius (hamilton) advanced fingerlings with emphasis on their culture potential. Aquaculture 258:606–610. doi:10.1016/j.aquaculture.2006.04.037

    Article  Google Scholar 

  • Dietz T (1994) Acclimation of the threshold induction temperatures for 70-kDa and 90-kDa heat shock proteins in the fish Gillichthys mirabilis. J Exp Biol 188:333–338

    PubMed  CAS  Google Scholar 

  • Dietz TJ, Somero GN (1992) The threshold induction temperature of the 90-kDa heat shock protein is subject to acclimatization in eurythermal goby fishes (genus Gillichthys). Proc Natl Acad Sci USA 89:3389–3393

    Article  PubMed  CAS  Google Scholar 

  • Dietz TJ, Somero GN (1993) Species- and tissue-specific synthesis patterns for heat-shock proteins HSP70 and HSP90 in several marine teleost fishes. Physiol Zool 66:863–880

    CAS  Google Scholar 

  • DuBeau SF, Pan F, Tremblay GC, Bradley TM (1998) Thermal shock of salmon in vivo induces the heat shock protein hsp 70 and confers protection against osmotic shock. Aquaculture 168:311–323. doi:10.1016/S0044-8486(98)00358-5

    Article  CAS  Google Scholar 

  • Dyer SD, Dickson KL, Zimmerman EG (1991) Tissue-specific patterns for heat-shock proteins and thermal tolerance of the fathead minnow (Pimephales prometas). Can J Zool 69:2021–2027

    Article  CAS  Google Scholar 

  • Ekambaram P (2010) Physiological adaptations of stressed fish to polluted environments: role of heat shock proteins. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 206. Springer, New York, pp 1–27. doi:10.1007/978-1-4419-6260-7_1

  • Hazel JR, Prosser CL (1974) Molecular mechanisms of temperature compensation in poikilotherms. Physiol Rev 54:620–677

    PubMed  CAS  Google Scholar 

  • Iwama GK, Thomas PT, Forsyth RB, Vijayan MM (1998) Heat shock protein expression in fish. Rev Fish Biol Fish 8:35–56. doi:10.1023/A:1008812500650

    Article  Google Scholar 

  • Kregel KC (2002) Molecular biology of thermoregulation: invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186. doi:10.1152/japplphysiol.01267.2001

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Lund SG, Ruberté MR, Hofmann GE (2006) Turning up the heat: the effects of thermal acclimation on the kinetics of hsp70 gene expression in the eurythermal goby, Gillichthys mirabilis. Comp Biochem Physiol A 143:435–446. doi:10.1016/j.cbpa.2005.12.026

    Article  Google Scholar 

  • Molur S, Walker S (2001) Conservation assessment and management plan. Workshop report by Zoo Outreach Organization. CBSG, Coimbatore Indian Edition

    Google Scholar 

  • Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410. doi:10.1126/science.8451637

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI, Santoro MG (1998) Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotech 16:833–838. doi:10.1038/nbt0998-833

    Article  CAS  Google Scholar 

  • Moseley PL (1997) Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol 83:1413–1417

    PubMed  CAS  Google Scholar 

  • Nakano K, Iwama GK (2002) The 70 kDa heat shock protein response in two intertidal sculpins, Oligocottus maculosus and O. snyderi: relationship of hsp70 to thermal tolerance. Comp Biochem Physiol A 133: 79–94. doi:10.1016/S1095-6433(02)00115-0

  • Norris C, di Iorio P, Schultz R, Hightower L (1995) Variation in heat shock proteins within tropical and desert species of poeciliid fishes. Mol Biol Evol 12:1048–1062

    PubMed  CAS  Google Scholar 

  • Pörtner HO (2001) Climatic change and temperature dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146. doi:10.1007/s001140100216

    Article  PubMed  Google Scholar 

  • Roberts DA, Hofmann GE, Somero GN (1997) Heat-shock protein expression in Mytilus californianus: acclimatization (seasonal and tidal-height comparisons) and acclimation effects. Biol Bull 192:309–320

    Article  CAS  Google Scholar 

  • Sanders BM, Martin LS, Howe SR, Nelson WG, Hegre ES, Phelps DK (1994) Tissue-specific differences in accumulation of stress proteins in Mytilus edulis exposed to a range of copper concentrations. Toxicol Appl Pharmacol 125:206–213. doi:10.1006/taap.1994.1066

    Article  PubMed  CAS  Google Scholar 

  • Sarma K, Pal AK, Ayyappan S, Das T, Manush SM, Debnath D, Baruah K (2010) Acclimation of anabas testudineus (bloch) to three test temperatures influences thermal tolerance and oxygen consumption. Fish Physiol Biochem 36:85–90. doi:10.1007/s10695-008-9293-3

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger MJ (1990) Heat shock proteins. (minireview). J Biol Chem 265:12111–12114

    PubMed  CAS  Google Scholar 

  • Schmidt H, Posthaus H, Busato A, Wahli T, Meier W, Burkhardt-Holm P (1998) Transient increase in chloride cell number and heat shock protein expression (hsp70) in brown trout (Salmo trutta fario) exposed to sudden temperature elevation. Biol Chem 379:1227–1234. doi:10.1515/bchm.1998.379.10.1227

    Article  PubMed  CAS  Google Scholar 

  • Selvakumar S, Geraldine P (2005) Heat shock protein induction in the freshwater prawn Macrobrachium malcolmsonii: acclimation-influenced variations in the induction temperatures for Hsp70. Comp Biochem Physiol A 140:209–215. doi:10.1016/j.cbpb.2005.01.008

    Article  CAS  Google Scholar 

  • Sreeraj N, Raghavan R, Prasad G (2006) The diet of Horabagrus brachysoma (gunther), an endangered bagrid catfish from Lake Vembanad (South India). J Fish Biol 69:637–642. doi:10.1111/j.1095-8649.2006.01134.x

    Article  Google Scholar 

  • Tomanek L, Somero GN (2002) Interspecific and acclimation induced variation in levels of heat-shock proteins 70 (hsp70) and 90 (hsp90) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genus Tegula): implications for regulation of hsp gene expression. J Exp Biol 205:677–685

    PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Viant MR, Werner I, Rosenblum ES, Gantner AS, Tjeerdema RS, Johnson ML (2003) Correlation between heat-shock protein induction and reduced metabolic condition in juvenile steelhead trout (Oncorhynchus mykiss) chronically exposed to elevated temperature. Fish Physiol Biochem 29:159–171. doi:10.1023/B:FISH.0000035938.92027.81

    Article  CAS  Google Scholar 

  • Wang Y, Xu J, Sheng L, Zheng Y (2007) Field and laboratory investigations of the thermal influence on tissue-specific Hsp70 levels in common carp (Cyprinus carpio). Comp Biochem Physiol A 148:821–827. doi:10.1016/j.cbpa.2007.08.009

    Article  Google Scholar 

  • Werner I, Koger CS, Hamm JT, Hinton DE (2001) Ontogeny of the heat shock protein, hsp70 and hsp60, response and developmental effects of heat-shock in the teleost, medaka (Oryzias latipes). Environ Sci 8:13–29

    CAS  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469. doi:10.1146/annurev.cb.11.110195.002301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The first author was senior research fellow in the thermal ecology project funded by the Board of Research in Nuclear Sciences (BRNS). The authors acknowledge the financial support from BRNS, Department of Atomic Energy, Government of India (BRNS Sanction No. 99/36/22/BRNS, Grant No. 089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishikesh S. Dalvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalvi, R.S., Pal, A.K., Tiwari, L.R. et al. Influence of acclimation temperature on the induction of heat-shock protein 70 in the catfish Horabagrus brachysoma (Günther). Fish Physiol Biochem 38, 919–927 (2012). https://doi.org/10.1007/s10695-011-9578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-011-9578-9

Keywords

Navigation