Skip to main content

Gut pH as a limiting factor for digestive proteolysis in cultured juveniles of the gilthead sea bream (Sparus aurata)

Abstract

After the development of the gastric function in juvenile fish, dietary proteins enter a two-phase digestive process comprising an acidic gastric phase followed by an alkaline intestinal phase. However, the main gastric protease, pepsin, is strictly dependent on the existence of a low-enough environmental pH. In 20-g gilthead sea bream, Sparus aurata, the mean minimal gastric pH is close to 4.5, while the mean pH in the duodenal portion of the intestine was nearly fixed at 6.5. The mean maximal gastric content of HCl was approximately 20 microEq for a low-buffering diet. Gastric proteases were more severely affected than intestinal proteases when assayed at actual sub-optimal pH values, 4.5 and 6.5, respectively. When the gastric proteases of juvenile fish were pre-incubated with a citric acid buffer at pH 6.0, the activity at pH 4.5 was very low, whereas when they were pre-incubated with the same buffer at pH 3.0, the activity at pH 4.5 was significantly increased; this fact suggests a deficient activation of zymogens during the gastric digestion and points to a potential approach to improve protein digestion in juvenile gilthead sea bream.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alarcón FJ, Díaz M, Moyano FJ, Abellán E (1998) Characterization and functional properties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish Physiol Biochem 19:257–267. doi:10.1023/A:1007717708491

    Article  Google Scholar 

  2. Al-Dabbas MM, Al-Ismail K, Taleb RA, Ibrahim S (2010) Acid-base buffering properties of five legumes and selected foods in vitro. Am J Agric Biol Sci 5:154–160

    Article  CAS  Google Scholar 

  3. Al-Janabi J, Hartsuck JA, Tang J (1974) Kinetics and mechanism of pepsinogen activation. J Biol Chem 247:4628–4632

    Google Scholar 

  4. Andrade DV, de Toledo LF, Abe AS, Wang T (2004) Ventilatory compensation of the alkaline tide during digestion in the snake Boa constrictor. J Exp Biol 207:1379–1385. doi:10.1242/jeb.00896

    PubMed  Article  CAS  Google Scholar 

  5. Anson M (1938) The estimation of pepsin, trypsin, papain and cathepsin with haemoglobin. J Gen Physiol 22:79–89. doi:10.1085/jgp.22.1.79

    PubMed  Article  CAS  Google Scholar 

  6. Björck I, Asp NG (1983) The effects of extrusion cooking on nutritional value—a literature review. J Food Eng 2:281–308. doi:10.1016/0260-8774(83)90016-X

    Article  Google Scholar 

  7. Blank R, Mosenthin WC, Huang S (1999) Effect of fumaric acid and dietary buffering capacity on ileal and fecal amino-acid digestibilities in early-weaned pigs. J Anim Sci 77:2974–2984

    PubMed  CAS  Google Scholar 

  8. Brand MD (2005) The efficiency and plasticity of mitochondrial energy transduction. Biochem Soc Trans 33:897–904

    PubMed  Article  CAS  Google Scholar 

  9. Bucking C, Wood CM (2006) Gastrointestinal processing of Na+, Cl and K+ during digestion: implications for homeostatic balance in freshwater rainbow trout. Am J Physiol Regul Integr Comp Physiol 192:R1764–R1772. doi:10.1152/japregu.00224.2006

    Article  Google Scholar 

  10. Bucking C, Wood CM (2009) The effect of postprandial changes in pH along the gastrointestinal tract on the distribution of ions between the solid and fluid phases of chime in rainbow trout. Aquac Nutr 15:282–296. doi:10.1111/j.1365-2095.2008.00593.x

    Article  CAS  Google Scholar 

  11. Castelló-Orvay F (2000) Alimentos y estrategias de alimentación para reproductores y juveniles de peces marinos. In: Civera Cerecedo R, Pérez Estrada CJ, Ricque Marie D, Cruz Suárez LE (eds) Memorias del IV Simposium Internacional de Nutrición Acuícola. Universidad Autónoma de Nuevo León, México, pp 550–569

    Google Scholar 

  12. Darías MJ, Murray HM, Martínez-Rodríguez G, Cárdenas S, Yúfera M (2005) Gene expression of pepsinogen during the larval development of red porgy (Pagrus pagrus). Aquaculture 248:245–252. doi:10.1016/j.aquaculture.2005.04.044

    Article  Google Scholar 

  13. Deguara S, Jauncey K, Agius C (2003) Enzyme activities and pH variations in the digestive tract of gilthead sea bream. J Fish Biol 62:1033–1043. doi:10.1046/j.1095-8649.2003.00094.x

    Article  CAS  Google Scholar 

  14. Gabert VM, Sauer WC, Schmitz M, Ahrens F, Mosenthin R (1995) The effect of formic acid and buffering capacity on the ileal digestibilities of amino acids and bacterial populations and metabolites in the small intestine of weanling pigs fed semipurified fish meal diets. Can J Anim Sci 75:615–623. doi:10.4141/cjas95-091

    Article  CAS  Google Scholar 

  15. Giger-Reverdin S, Duvaux-Ponter C, Sauvant D, Olivier M, Nunes do Prado I, Müller R (2002) Intrinsic buffering capacity of feedstuffs. Anim Feed Sci Tech 96:83–102. doi:10.1016/S0377-8401(01)00330-3

    Article  CAS  Google Scholar 

  16. Guillaume J, Kaushik S, Bergot P, Metailler R (2008) Nutrición y Alimentación de peces y crustáceos. Mundi-Prensa, Madrid

    Google Scholar 

  17. Hardy RW (2000) New developments in aquatic feed ingredients and potential of enzyme supplements. In: Cruz-Suárez LE, Ricque-Marie D, Tapia-Salazar M, Olvera-Novoa MA, Civera-Cerecedo R (eds) Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola. Mérida, Mexico, pp 216–226

  18. Hoehme-Reitan K, Kjørsvik E, Reitan KI (2001) Development of the pH in the intestinal tract of larval turbot. Mar Biol 139:1159–1164. doi:10.1007/s002270100653

    Article  Google Scholar 

  19. Lawlor PG, Lynch PB, Caffrey PJ, O’Reilly JJ, O’Connell MK (2005) Measurement of the acid-binding capacity of ingredients used in pig diets. Ir Vet J 58:447–452. doi:10.1186/2046-0481-58-8-447

    PubMed  Article  Google Scholar 

  20. Lückstädt C (2008) The use of acidifiers in fish nutrition. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 3, No. 044

  21. Maroux S, Baratti J, Desnuelle P (1971) Purification and specificity of porcine enterokinase. J Biol Chem 246:5031–5039

    PubMed  CAS  Google Scholar 

  22. Mazlan AJ, Grove DJ (2004) Quantification of gastric secretion on the wild whiting fed on natural prey in captivity. J Appl Ichthyol 20:295–301. doi:10.1111/j.1439-0426.2004.00569.x

    Article  Google Scholar 

  23. Millidine KJ, Armstrong JD, Metcalfe MD (2009) Juvenile salmon with high standard metabolic rates have higher energy costs but can process meals faster. Proc R Soc B Biol Sci 276:2103–2108. doi:10.1098/rspb.2009.0080

    Article  CAS  Google Scholar 

  24. Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in a era of finite resources. Proc Natl Acad Sci USA 106:15103–15110. doi:10.1073/pnas.0905235106

    PubMed  Article  CAS  Google Scholar 

  25. Nikolopulou D, Moutou KA, Fountoulaki E, Venou B, Adamidou S, Alexis MN (2011) Patterns of gastric evacuation, digesta characteristics and pH changes along the gastrointestinal tract of gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Comp Biochem Phys A 158:406–414. doi:10.1016/j.cbpa.2010.11.021

    Article  Google Scholar 

  26. Papastamatiou YP (2007) The potential influence of gastric acid secretion during fasting on digestion in leopard sharks (Triakis semifasciata). Comp Biochem Phys A 147:37–42. doi:10.1016/j.cbpa.2006.11.012

    Article  Google Scholar 

  27. Reenstra WW, Forte JG (1981) H+/ATP stoichiometry for the gastric (K+ + H+)-ATPase. J Membr Biol 61:55–60. doi:10.1007/BF01870752

    PubMed  Article  CAS  Google Scholar 

  28. Rees DC, Howard JB (1999) Structural bioenergetics and energy transduction mechanisms. J Mol Biol 293:343–350. doi:10.1006/jmbi.1999.3005

    PubMed  Article  CAS  Google Scholar 

  29. Rønnestad I, Perez Domínguez R, Tanaka M (2000) Ontogeny of digestive tract functionality in Japanese flounder, Paralichthys olivaceus studied by in vivo microinjection: pH and assimilation of free amino acids. Fish Physiol Biochem 22:225–235. doi:10.1023/A:1007801510056

    Article  Google Scholar 

  30. Secor SM (2003) Gastric function and its contribution to the postprandial metabolic response of the Burmese phyton Phyton molurus. J Exp Biol 206:1621–1630. doi:10.1242/jeb.00300

    PubMed  Article  Google Scholar 

  31. Secor SM (2009) Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol B 179:1–56. doi:10.1007/s00360-008-0283-7

    PubMed  Article  Google Scholar 

  32. Shahidi K, Kamil IVAJ (2001) Enzymes from fish and aquatic invertebrates and their application in food industry. Trends Food Sci Tech 12:435–464. doi:10.1016/S0924-2244(02)00021-3

    Article  Google Scholar 

  33. Skrabanja ATP, De Pont JJHHM, Bonting SL (1984) The H+/ATP transport ratio of the (K+ + H+)-ATPase of pig gastric membrane vesicles. BBA Biomembr 774:91–95. doi:10.1016/0005-2736(84)90278-5

    Article  CAS  Google Scholar 

  34. Tacon AGC, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeed: trends and future prospects. Aquaculture 285:146–158. doi:10.1016/j.aquaculture.2008.08.015

    Article  CAS  Google Scholar 

  35. Toseland CP, McSparron H, Davies MN, Flower DR (2006) PPD 1.0—an integrated, web-accessible database of experimentally determined protein pKa values. Nucleic Acids Res 34:D199–D203. doi:10.1093/nar/gkj035

    Google Scholar 

  36. Twining SS, Alexander PA, Huibregtse K, Glick DM (1983) A pepsinogen from rainbow trout. Comp Biochem Physiol B 75:109–112. doi:10.1016/0305-0491(83)90046-9

    PubMed  Article  CAS  Google Scholar 

  37. Walford J, Lam TJ (1993) Development of digestive tract and proteolytic enzyme activity in seabass (Lates calcarifer) larvae and juveniles. Aquaculture 109:187–205. doi:10.1016/0044-8486(93)90215-K

    Article  CAS  Google Scholar 

  38. Walter HE (1984) Proteinases: methods with haemoglobin casein and azocoll as substrates. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Cmemie, Weinheim, pp 270–277

    Google Scholar 

  39. Wilson JM, Castro LFC (2010) Morphological diversity of the gastrointestinal tract of fishes. Fish Physiol 30:1–55. doi:10.1016/S1546-5098(10)03001-3

    Article  Google Scholar 

  40. Yúfera M, Fenández-Díaz C, Vidaurreta A, Cara JB, Moyano FJ (2004) Gastrointestinal pH and development of the acid digestion in larvae and early juveniles of Sparus aurata (Pisces: Teleostei). Mar Biol 144:863–869. doi:10.1007/s00227-003-1255-9

    Article  Google Scholar 

  41. Zheng XL, Kitamoto Y, Sadler JE (2009) Enteropeptidase, a type II transmembrane serine protease. Front Biosci E1:242–249. doi:10.2741/e23

    CAS  Google Scholar 

Download references

Acknowledgments

The present work has been supported by the Project “Proyecto de Excelencia de la Junta de Andalucía AGR-5234”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Márquez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Márquez, L., Robles, R., Morales, G.A. et al. Gut pH as a limiting factor for digestive proteolysis in cultured juveniles of the gilthead sea bream (Sparus aurata). Fish Physiol Biochem 38, 859–869 (2012). https://doi.org/10.1007/s10695-011-9573-1

Download citation

Keywords

  • Gut pH
  • Diet buffering capacity
  • Acid proteases
  • Alkaline proteases
  • Juvenile Sparus aurata