Skip to main content

Advertisement

Log in

Energy balance of juvenile Cyprinus carpio after a short-term exposure to sublethal water-borne cadmium

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Stress in fish can be assessed by means of a bioenergetic approach, based on the evaluation of changes in their physiological parameters. The objective of this study was to determine the impact of sublethal water-borne cadmium (Cd) on the energetic balance of juvenile Cyprinus carpio under laboratory conditions after a short-term exposure. Fish were exposed to a concentration of Cd (0.15 mg Cd l−1) for 2 weeks. This concentration is environmentally realistic since it is usually found, even at higher values, in heavily polluted periurban water bodies of Argentina. No mortality was recorded among the animals used in the experiments. Food intake, food assimilation and assimilation efficiency, fecal production, liver glycogen content, oxygen consumption, oxygen extraction efficiency, specific metabolic rate, ammonia excretion and ammonia quotient (AQ), condition factor, and liver somatic index were determined. The overall balance was expressed as the scope for growth (SFG). The morphological indices and the liver glycogen content of Cd-exposed fish showed no significant differences when compared to those of controls. There was a significant decrease in the food intake, fecal production, and food assimilation rates as well as in AQ; the SFG exhibited a highly significant decrease. The remaining parameters (assimilation efficiency, oxygen consumption, oxygen extraction efficiency, specific metabolic rate, and ammonia excretion) increased after the exposure to Cd. We concluded that the sub-chronic exposure of Cyprinus carpio to a sublethal concentration of Cd causes important alterations in the energy-related homeostasis of fish. Most of the responses are indicative of physiological adaptations to compensate an increased energy requirement due to the impairments caused by the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel PD, Papoutsoglou SE (1986) Lethal toxicity of cadmium to Cyprinus carpio and Tilapia aurea. Bull Env Contam Toxicol 37:382–386

    Article  CAS  Google Scholar 

  • Alcaraz G, Espina S (1997) Scope for growth of juvenile Grass carp, Ctenopharyngodon idella exposed to nitrite. Comp Biochem Physiol 116:85–88

    Google Scholar 

  • Allin CJ, Wilson RW (1999) Behavioural and metabolic effects of chronic exposure to sublethal cadmium in acidic soft water in juvenile rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 56:670–673

    Article  CAS  Google Scholar 

  • Almeida JA, Novelli ELB, Dal Pai Silva M, Alves Júnior R (2001) Environmental cadmium exposure and metabolic responses of the Nile tilapia. Oreochromis niloticus Environm Pollut 114:169–175

    Article  CAS  Google Scholar 

  • Alves LC, Glover CN, Wood CM (2006) Dietary Pb accumulation in juvenile freshwater rainbow trout (Oncorhynchus mykiss). Arch Environ Contam Toxicol 51:615–625

    Article  PubMed  CAS  Google Scholar 

  • Asagba SO, Eriyamremu GE, Igberaese ME (2008) Bioaccumulation of cadmium and its biochemical effect on selected tissues of the catfish (Clarias gariepinus). Fish Physiol Biochem 34:61–69

    Article  PubMed  CAS  Google Scholar 

  • Battaglini P, Andreozzi G, Antonucci R, Arcamone N, De Girolamo P, Ferrara L, Gargiulo G (1993) The effects of cadmium on the gills of the goldfish Carassius auratus L.: metal uptake and histochemical changes. Comp Biochem Physiol 104C:239–247

    CAS  Google Scholar 

  • Bentley PJ (1991) Accumulation of cadmium by channel catfish (Ictalurus punctatus): influx from environmental solutions. Comp Biochem Physiol 99C:527–529

    CAS  Google Scholar 

  • Carrier R, Beitinger TL (1988) Resistance of temperature tolerance ability of green sunfish to cadmium exposure. Bull Env Contam Toxicol 40:475–480

    Article  CAS  Google Scholar 

  • Couture P, Kumar PR (2003) Impairment of metabolic capacities in copper and cadmium contaminated wild yellow perch (Perca flavescens). Aquat Toxicol 64:107–120

    Article  PubMed  CAS  Google Scholar 

  • Datta DK, Sinha GM (1990) Comparative static bioassay of cadmium toxicity for two Indian freshwater teleosts. J Freshwater Biol 2:313–321

    Google Scholar 

  • De Boeck G, De Smet H, Blust R (1995) The effect of sublethal levels of copper on oxygen consumption and ammonia excretion in the common carp, Cyprinus carpio. Aquat Toxicol 32:127–141

    Article  Google Scholar 

  • De Boeck G, Vlaeminck A, Van der Linden A, Blust R (2000) The energy metabolism of common carp (Cyprinus carpio) when exposed to salt stress: an increase in energy expenditure or effects of starvation? Physiol Biochem Zool 73:102–111

    Article  PubMed  Google Scholar 

  • De Boeck G, van der Ven K, Hattink J, Blust R (2006) Swimming performance and energy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure. Aquat Toxicol 80:92–100

    Article  PubMed  Google Scholar 

  • de la Torre FR (2001) Estudio integrado de la contaminación acuática mediante bioensayos y parámetros fisiológicos y bioquímicos indicadores de estrés ambiental. Doctoral Dissertation, Faculty of Exact and Natural Sciences, University of Buenos Aires

  • de la Torre FR, Ferrari L, Salibián A (1999) Enzyme activities as biomarkers of freshwater pollution: response of fish branchial Na+ K-ATPase and liver transaminases. Environ Toxicol 14:313–319

    Article  Google Scholar 

  • de la Torre F, Ferrari L, Salibián A (2000) Long-term in situ water toxicity bioassays in the Reconquista river (Argentina) with Cyprinus carpio as sentinel organism. Water Air Soil Pollut 121:205–215

    Article  Google Scholar 

  • De Smet H, Blust R (2001) Stress responses and changes in protein metabolism in carp Cyprinus carpio during cadmium exposure. Ecotoxicol Environ Saf 48:255–262

    Article  PubMed  Google Scholar 

  • Eastwood S, Couture P (2002) Seasonal variations in condition and liver metal concentrations of yellow perch (Perca flavescens) from a metal-contaminated environment. Aquat Toxicol 58:43–56

    Article  PubMed  CAS  Google Scholar 

  • Eissa BL (2009) Biomarcadores comportamentales, fisiológicos y morfológicos de exposición al Cadmio en peces pampeanos. Doctoral Dissertation, Faculty of Exact and Natural Sciences, University of Buenos Aires

  • Eissa BL, Salibián A, Ferrari L (2006) Behavioral alterations in juvenile Cyprinus carpio exposed to sublethal waterborne cadmium. Bull Environ Contam Toxicol 77:931–937

    Article  PubMed  CAS  Google Scholar 

  • Eissa BL, Ossana NA, Salibián A, Ferrari L, Pérez RH (2009) Cambios en la velocidad de nado como indicador del efecto tóxico del Cadmio en Astyanax fasciatus y Australoheros facetum. Biología Acuática 26:83–90

    Google Scholar 

  • Eissa BL, Osanna NA, Ferrari L, Salibián A (2010) Quantitative behavioral parameters as toxicity biomarkers: fish responses to waterborne cadmium. Arch Environ Contam Toxicol 58:1032–1039

    Article  PubMed  CAS  Google Scholar 

  • Elliott JM, Davison W (1975) Energy equivalents of oxygen consumption in animal energetics. Oecologia 19:195–201

    Article  Google Scholar 

  • Espina S, Díaz F, Rosas C, Rosas I (1986). Influencia del detergente en el balance energético de Ctenopharyngodon idclla a través de un bioensayo crónico Contam Ambient 2:25–37

    Google Scholar 

  • Espina S, Salibián A, Díaz F (2000) Influence of cadmium on the respiratory function of the grass carp Ctenopharyngodon idella. Water Air Soil Pollut 119:1–4

    Article  CAS  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Revs 85:97–177

    Article  CAS  Google Scholar 

  • Fangue NA, Mandic M, Richards JG, Schulte PM (2008) Swimming performance and energetics as a function of temperature in killifish Fundulus heteroclitus. Physiol Biochem Zool 81:389–401

    Article  PubMed  Google Scholar 

  • Ferrari L, Eissa BL, Ossana N, Salibián A (2005) Efectos de la exposición a cadmio subletal sobre la morfología de las branquias de Cyprinus carpio. Acta Toxicol Argent 13(Suppl):18–19

    Google Scholar 

  • Ferrari L, Eissa BL, Salibián A, Borgnia M. (2006) Análisis de parámetros morfológicos y fisiológicos como biomarcadores de contaminación por Cadmio en juveniles de Cyprinus carpio. In: Herkovits J (ed) Salud ambiental y humana: una visión holistica, SETAC-Buenos Aires. pp 106–108

  • Ferrari L, Eissa BL, Ossana NA, Salibián A (2009) Effects of sublethal waterbone cadmium on gills in three teleosteans species: scanning electron microscope study. Internat J Environ Health 3:410–426

    Article  CAS  Google Scholar 

  • Giesy JP, Graney RL (1989) Recent developments in the intercomparisons of acute and chronic bioassays and bioindicators. Hydrobiologia 188(189):21–60

    Article  Google Scholar 

  • Goering PL, Waalkes MP, Klaassen CD (1995) Toxicology of cadmium. In: Goyer RA, Cherian MG (eds) Toxicology of metals—biochemical aspects. Springer, Berlin, pp 189–214

    Google Scholar 

  • Handy R, Depledge MH (1999) Physiological responses: their measurement and use as environmental biomarkers in Ecotoxicology. Ecotoxicology 8:329–349

    Article  CAS  Google Scholar 

  • Hashemi S, Blust R, De Boeck G (2008) Combined effects of different food rations and sublethal cooper exposure on growth and energy metabolism in common carp. Arch Environ Contam Toxicol 54:318–324

    Article  PubMed  CAS  Google Scholar 

  • Hellawell JM (1986) Biological indicators of freshwater pollution and environmental management. Elsevier Applied Science Publishers, London, p 546

    Google Scholar 

  • Jezierska B, Witeska M (2001) Metal toxicity to fish. Wydawnictwo Akademii Podlaskiej, Siedlce, p 318

    Google Scholar 

  • Kunwar PS, Tudorache C, Eyckmans M, Blust R, De Boeck G (2009) Influence of food ration, copper exposure and exercise on the energy metabolism of common carp (Cyprinus carpio). Comp Biochem Physiol 149C:113–119

    CAS  Google Scholar 

  • Kuroshima R, Kimura S, Date K, Yamamoto Y (1993) Kinetic analysis of cadmium toxicity to red sea bream, Pagrus major. Ecotoxicol Environ Saf 25:300–314

    Article  PubMed  CAS  Google Scholar 

  • Kutty MN (1978) Ammonia quotient in sockeye salmon (Oncorhynchus nerka). J Fish Res Bd Can 35:1003–1005

    Article  CAS  Google Scholar 

  • Morrow MD, Higgs D, Kennedy CJ (2004) The effects of diet composition and ration on biotransformation enzymes and stress parameters in rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol 137C:143–154

    CAS  Google Scholar 

  • Moza U, De Silva SS, Mitchell BM (1995) Effect of sub-lethal concentrations of cadmium on food intake, growth and digestibility in the goldfish, Carassius auratus L. J Environ Biol 16:253–264

    CAS  Google Scholar 

  • Navarro I, Gutiérrez J (1995) Fasting and starvation. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 4. Elsevier, Amsterdam, pp 393–434

    Google Scholar 

  • Newman MC, Clements WH (2008) Ecotoxicology. A comprehensive treatment. CRC Press, Boca Raton

    Google Scholar 

  • Ossana NA, Eissa BL, Salibián A (2009) Cadmium bioconcentration and genotoxicity in the common carp (Cyprinus carpio). Internat J Environ Health 3:302–309

    Article  CAS  Google Scholar 

  • Owen SF, Houlihan DF, Rennie MJ, van Weerd JH (1998) Bioenergetics and nitrogen balance of the European eel (Anguila anguila) fed at high and low ration levels. Can J Fish Aquat Sci 55:2365–2375

    Article  Google Scholar 

  • Peters G (1982) The effect of stress on the stomach of the European eel, Anguilla anguilla. J Fish Physiol 21:497–512

    Article  Google Scholar 

  • Pistole DH, Peles JD, Taylor K (2008) Influence of metal concentrations, percent salinity and length of exposure on the metabolic rate of fathead minnows (Pimephales promelas). Comp Biochem Physiol 148C:48–52

    CAS  Google Scholar 

  • Pottinger TG, Calder GM (1995) Physiological stress in fish during toxicologicl procedures: a potentally confounding factor. Environ Toxicol Water Qual 10:135–146

    Article  CAS  Google Scholar 

  • Roast SD, Widdows J, Jones MB (1999) Scope for growth of the estuarine mysid Neomysis integer (Peracarida: Mysidacea): effects of the organophosphate pesticide chlorpyrifos. Mar Ecol Progr Ser 191:233–241

    Article  CAS  Google Scholar 

  • Salibián A (2006) Ecotoxicological assessment of the highly polluted Reconquista River of Argentina. In: Ware GW (ed) Rev Environm Contam Toxicol, vol 185, pp 35–65

  • Sanchez W, Porcher JM (2009) Fish biomarkers for environmental monitoring within the water framework directive of the European Union. Trends Anal Chem 28:150–158

    Article  CAS  Google Scholar 

  • Sancho E, Ferrando MD, Fernádez C, Andreu E (1998) Liver energy metabolism of anguilla after exposure to fenitrothion. Ecotoxicol Environ Safety 41:168–175

    Article  PubMed  CAS  Google Scholar 

  • Schelenk D, Handy R, Steinert S, Depledge MH, Benson W (2008) Biomarkers. In: Di Giulio RT, Hinton DE (eds) The toxicology of fishes. CRC Press, Boca Raton, pp 683–731

    Chapter  Google Scholar 

  • Scott GS, Sloman KA (2004) The effects of environmental pollutants on complex fish behavior: integrating behavioral and physiological indicators of toxicity. Aquat Toxicol 38:369–392

    Article  Google Scholar 

  • Seifter S, Dayton S, Novic B, Montwyler E (1950) The estimation of glycogen with the anthrone reagent. Arch Biochem 25:191–200

    PubMed  CAS  Google Scholar 

  • Seyle H (1973) The evolution of the stress concept. Am Sci 61:692–699

    Google Scholar 

  • Sibly RM, Calow P (1986) Physiological ecology of animals. An evolutionary approach. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Sloman KA, Wilson RW (2006) Anthropogenic impacts upon behaviour and physiology. In: Sloman KA, Wilson RW, Balshine S (eds) Behaviour and physiology of fish. Academic Press, San Diego, pp 413–458

    Google Scholar 

  • Smolders R, Bervoets L, De Boeck G (2002) Integrated condition indices as measure of whole effluent toxicity in zebrafish (Danio rerio). Environ Toxicol Chem 21:87–93

    PubMed  CAS  Google Scholar 

  • Soengas JL, Agra-Lago MJ, Carballo B, Andrés MD, Veira JAR (1996) Effect of acute exposure to sublethal concentrations of cadmium on liver carbohydrate metabolism of Atlantic salmon (Salmo salar). Bull Environ Contam Toxicol 57:625–631

    Article  PubMed  CAS  Google Scholar 

  • Strand A, Magnhagen C, Alanara A (2007) Effects of repeated disturbances on feed intake, growth rates and energy expenditures of juvenile perch, Perca fluviatilis. Aquaculture 265:163–168

    Article  Google Scholar 

  • Suresh A, Sivaramakrishna B, Radhakrishnaiah K (1993) Effect of lethal and sublethal concentrations of cadmium on energetics in the gills of fry and fingerlings of Cyprinus carpio. Bull Env Contam Toxicol 51:920–926

    Article  CAS  Google Scholar 

  • van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  PubMed  Google Scholar 

  • Watson CF, Benson WH (1987) Comparative activity of gill ATPase in three freshwater teleosts exposed to cadmium. Ecotoxicol Environ Saf 14:252–259

    Article  PubMed  CAS  Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    PubMed  CAS  Google Scholar 

  • Widdows J, Donkin P (1991) Role of physiological energetics in ecotoxicology. Comp Biochem Physiol 100C:69–75

    CAS  Google Scholar 

  • Widdows J, Salkeld PN (1993) Practical procedures for the measurement of scope for growth. MAP Teach Rep Ser 71:147–172

    Google Scholar 

  • Wilson RW, Bergman HL, Wood CM (1994) Metabolic costs and physiological consequences of acclimation to aluminum in juvenile rainbow trout (Oncorhynchus mykiss).1: acclimation specificity, resting physiology, feeding and growth. Can J Fish Aquat Sci 51:527–535

    Article  CAS  Google Scholar 

  • Witeska M, Jezierska B, Wolnicki J (2006) Respiratory and hematological response of tench, Tinca tinca (L.) to a short-term cadmium exposure. Aquacult Internat 14:141–152

    Article  CAS  Google Scholar 

  • Wright DA, Welbourn PM (1994) Cadmium in the aquatic environment: a review of ecological, physiological, and toxicological effects on biota. Environ Rev 2:187–214

    Article  CAS  Google Scholar 

  • Zar JH (2010) Biostatistical analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

Authors wish to thank Mr. J. Perez (CIC) for cadmium measurements, Eng C. Marchesich for the determination of analytical composition of fish food, Dr. Mariela Borgnia for her help during experiments and to the reviewers’ valuables comments and suggestions that helped them to improve the original text of the manuscript This work was supported by grants from the National University of Lujan (Basic Sciences Department) and the Scientific Research Commission of Buenos Aires (CIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, L., Eissa, B.L. & Salibián, A. Energy balance of juvenile Cyprinus carpio after a short-term exposure to sublethal water-borne cadmium. Fish Physiol Biochem 37, 853–862 (2011). https://doi.org/10.1007/s10695-011-9483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-011-9483-2

Keywords

Navigation