Alterations in blood electrolytes of a freshwater catfish Heteropneustes fossilis in response to treatment with a botanical pesticide, Nerium indicum leaf extract

Abstract

The present study aimed at investigating the effects of Nerium indicum leaf extract on the blood electrolytes of Heteropneustes fossilis for short- and long term. Fish were subjected to Nerium indicum leaf extract for short term (11.27 mg/L i.e. 0.8 of 96 h LC50) and long term (2.81 mg/L i.e. 0.2 of 96 h LC50). Fish were killed on each time intervals from control and experimental (Nerium indicum) groups after 24, 48, 72, and 96 h in short-term exposure and after 7, 14, 21, and 28 days in long-term experiment. Blood samples were analyzed for calcium and inorganic phosphate levels. Acute exposure of Nerium indicum leaf extract caused a progressive decrease in the serum calcium levels after 48 h in fish H. fossilis, which persists till the close of the experiment (96 h). The serum inorganic phosphate levels remain unaffected till 48 h in the Nerium indicum leaf extract–exposed fish. After 72 and 96 h, the levels exhibit a decrease. Chronic Nerium indicum leaf extract treatment provoked a decrease in serum calcium levels at day 14. This decrease continues till 28 days. The serum phosphate level of the Nerium indicum leaf extract–treated fish decreases on day 14 and 21. However, on day 28, the levels become close to the normal values. We conclude that Nerium indicum leaf extract exposure alters the blood electrolytes of the fish, thus causing physiological disturbances which might affect seriously the normal vital functions, growth rate, reproduction, and their survival in nature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ada SE, Al-yahya MA, Al-Farhan AH (2001) Acute toxicity of various oral doses of dried Nerium oleander leaves in sheep. Am J Chin Med 29:525–532

    PubMed  CAS  Article  Google Scholar 

  2. Adeyemo OK (2008) Histological alterations observed in the gills and ovaries of Clarias gariepinus exposed to environmentally relevant lead concentrations. J Environ Health 70:48–51

    PubMed  CAS  Google Scholar 

  3. Akram M, Hafeez MA, Nabi G (1999) Histopathological changes in the kidney of a freshwater cyprinid fish, Barilius vagra, following exposure to cadmium. Pak J Zool 31:77–80

    CAS  Google Scholar 

  4. Aslani MR, Movassaghi AR, Mohri M, Abbasian A, Zarehpour M (2004) Clinacal and pathological aspects of experimental oleander (Nerium oleander) toxicosis in sheep. Vet Res Commun 28:609–616

    PubMed  CAS  Article  Google Scholar 

  5. Barbosa RR, Fontenele-Neto JD, Soto-Blanco B (2007) Toxicity in goats caused by oleander (Nerium oleander). Res Vet Sci. doi:10.1016/J rvsc 2007.10.004

  6. Blum LM, Rieders F (1987) Oleandrin distribution in a fatality from rectal and oral Nerium oleander extract administration. J Anal Toxicol 11:219–221

    PubMed  CAS  Google Scholar 

  7. Camargo MMP, Martinez CBR (2007) Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream. Neotrop Ichthyol 5:327–336

    Article  Google Scholar 

  8. Candioti JV, Natale SG, Soloneski S, Ronco AE, Larramendy ML (2010) Sublethal and lethal effects on Rhinella Arenarum (Anura, Bufonidae) tadpoles exerted by the pirimicarb-containing formulation insecticide Aficida. Chemosphere 78:249–255

    CAS  Article  Google Scholar 

  9. Cengiz EI (2006) Gill and kidney Histopathology in the freshwater fish Cyprinus carpio after acute exposure to deltamethrin. Environ Toxicol Pharmacol 22:200–204

    CAS  Article  Google Scholar 

  10. Eisler R (1967) US Bur Sport Fish Wildl Tech Paper 17 pp 15 In: Edwards RP (ed) Pesticides and ecology. pp 213–251

  11. El-Shazly MM, Nassar MI, el-Sherief HA (1996) Toxic effect of ethanolic extract of Nerium oleander (Apocynaceae) leaves against different developmental stages of Muscina stabulans (Diptera-Muscidae). J Egypt Soc Parasitol 26:461–473

    PubMed  CAS  Google Scholar 

  12. Frohne P, Fander J (1983) A color atlas of poisonous plant. A wolf Science Book, London

  13. Gill TS, Pant SC, Pant J (1988) Gill, liver and kidney lesions associated with experimental exposure to carbaryl and dimethoate in the fish (Puntius conchonius Ham). Bull Environ Contam Toxicol 4:71–78

    Article  Google Scholar 

  14. Gill TS, Pande J, Tewari H (1991) Effects of endosulfan on the blood and organ chemistry of freshwater fish Barbus conchonius (Ham). Ecotoxicol Environ Saf 21:80–91

    PubMed  CAS  Article  Google Scholar 

  15. Goktas O, Mammadov R, Duru ME, Ozen E, Colak AM (2007) Application of extracts from the poisonous plant, Nerium oleander L. as a wood preservative. Afr J Biotechnol 6:2000–2003

    Google Scholar 

  16. Haeba MH, Mohamed AI, Mehdi AW, Nair GA (2002) Toxicity of Nerium oleander leaf extract in mice. J Environ Biol 23:231–237

    PubMed  CAS  Google Scholar 

  17. Haux C (1979) Effects of DDT on blood plasma electrolytes in the flounder Platichthys flesus L in hypotonic brackish water. Ambio 8:171–173

    CAS  Google Scholar 

  18. Haux C, Larsson A (1984) Long term sublethal physiological effects on rainbow trout, Salmo gairdneri, during exposure to cadmium and after subsequent recovery. Aquat Toxicol 5:129–142

    CAS  Article  Google Scholar 

  19. Haynes BE, Bessen HA, Wightman WD (1985) Oleander tea: herbal draught of death. Ann Emerg Med 14:350–353

    PubMed  CAS  Article  Google Scholar 

  20. Jayachandran K, Pugazhendy K (2009) Histopathological changes in the gill of Labeo rohita (Hamilton) fingerlings exposed to atrazine. Am Eurasian J Sci Res 4:219–221

    Google Scholar 

  21. Jones DK, Hammond JI, Relyea RA (2009) Very highly toxic effects of endosulfan across nine species of tadpoles: lag effects and family-level sensitivity. Environ Toxicol Chem 28:1939–1945

    PubMed  CAS  Article  Google Scholar 

  22. Larsson A, Bengtsson BE, Svanberg O (1976) Some hematological and biochemical effects of cadmium on fish. In: Lockwood AMP (ed) Effects of pollutants on aqautic organisms. Cambridge University Press, London, pp 35–45

    Google Scholar 

  23. Longford SD, Boor PJ (1996) Oleander toxicity: an examination of human and animal toxic exposures. Toxicology 109:01–13

    Article  Google Scholar 

  24. Mayer-Gostan N, Naon R (1992) Effects of ambient ion concentrations on gill ATPase in freshwater eel Anguilla anguilla. Fish Physiol Biochem 10:75–89

    CAS  Article  Google Scholar 

  25. Mishra D, Srivastav S, Srivastav SK, Srivastav AK (2001) Plasma calcium and inorganic phosphate levels of a freshwater catfish, Heteropneustes fossilis in response to cypermethrin treatment. J Ecophysiol Occup Health 1:131–138

    CAS  Google Scholar 

  26. Mishra D, Srivastav S, Srivastav SK, Srivastav AK (2002) Toxicity and behavioural responses of a freshwater catfish, Heteropneustes fossilis to a synthetic pyrethroid (cypermethrin). J Adv Zool 23:39–42

    Google Scholar 

  27. Mishra D, Rai R, Srivastav SK, Srivastav AK (2010a). Histological alterations in the prolactin cells of a teleost Heteropneustes fossilis after exposure to cypermethrin. Environ Toxicol doi:10:1002/tox.20562

  28. Mishra D, Tripathi S, Srivastav SK, Suzuki N, Srivastav Ajai K (2010b) Corpuscles of Stannius of a teleost, Heteropneustes fossilis following intoxication with a pyrethroids (cypermethrin). North West J Zool 6:203–208

    Google Scholar 

  29. Oner M, Atli G, Canli M (2008) Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Environ Toxicol Chem 27:360–366

    PubMed  CAS  Article  Google Scholar 

  30. Oryan A, Maham M, Rezakhani A, Maleki M (1996) Morphological studies of experimental oleander poisoning in cattle. Zentralbl Veterinarmed A 43:625–634

    PubMed  CAS  Google Scholar 

  31. Pandey R, Malviya A, Das V (2009) Toxicity of cypermethrin, effects on serum electrolytes (Ca+2, Mg+2 and Pi) levels and recovery response in freshwater catfish Heteropneustes fossilis Bloch. Int J Biol Chem Sci 30:437–440

    CAS  Google Scholar 

  32. Panigrahi A, Raut SK (1994) Thevetia peruviana (Family: Apocyanaceae) in control of slug and snail pests. Mem Inst Oswaldo Cruz 89:247–250

    Article  Google Scholar 

  33. Part P, Lock RAC (1983) Diffusion of calcium, cadmium and mercury in a mucous solution from rainbow trout. Comp Biochem Physiol 76C:259–263

    CAS  Google Scholar 

  34. Pratap HB, Fu H, Lock RAC, Wendelaar Bonga SE (1989) Effect of water borne and dietary cadmium on plasma ions of the teleost Oreochromis mossambicus in relation to water calcium level. Arch Environ Contam Toxicol 18:568–575

    CAS  Article  Google Scholar 

  35. Rai R, Srivastav AK (2003) Effects of cadmium on the plasma electrolytes of a freshwater fish Heteropneustes fossilis. J Ecophysiol Occup Health 3:63–70

    CAS  Google Scholar 

  36. Rai R, Mishra D, Srivastav SK, Srivastav AK (2009) Ultimobranchial gland of a freshwater teleost, Heteropneustes fossilis in response to cadmium treatment. Environ Toxicol 24:589–593

    PubMed  CAS  Article  Google Scholar 

  37. Rai R, Mishra D, Srivastav SK, Srivastav Ajai K (2010) Acute toxicity of cadmium against catfish, Heteropneustes fossilis (Siluriformes: Heteropneustidae) in a static renewal bioassay. Ethiop J Biol Sci (in press)

  38. Roch M, Maly EJ (1979) Relationship of cadmium induced hypocalcemia with mortality in rainbow trout (Salmo gairdneri) and the influence of temperature on toxicity. J Fish Res Board Can 36:1297–1303

    CAS  Article  Google Scholar 

  39. Saravanan K, Senthilkumar S, Elayaraja M, Suresh B (2004) Toxicity of Nerium indicum Miller seed extract on bandicoot rat Bandicota bengalensis. Gray Indian J Exp Biol 42:1003–1006

    CAS  Google Scholar 

  40. Sharma ML, Agarwal VP, Awasthi AK, Tyagi SK (1982) Hematological and biochemical characteristics of Heteropneustes fossilis under the stress of congo red (diphenyl diszabine pthionic acid). Toxicol Lett 14:237–240

    PubMed  CAS  Article  Google Scholar 

  41. Singh D, Singh A (2002) Piscicidal effect of some common plants of India commonly used in freshwater bodies against target animals. Chemosphere 49:45–49

    PubMed  CAS  Article  Google Scholar 

  42. Singh DK, Singh A, Agarwal RA (1993) Nerium indicum as a potent molluscicide of plant origin. J Med Appl Malacol 5:93–95

    Google Scholar 

  43. Singh NN, Das VK, Singh S (1996) Effect of aldrin on carbohydrate, protein and ionic metabolism of a freshwater catfish, Heteropneustes fossilis. Bull Environ Contam Toxicol 57:204–210

    PubMed  CAS  Article  Google Scholar 

  44. Singh NN, Das VK, Srivastava AK (1997) Formothion and propoxur induced ionic imbalance and skeletal deformity in a catfish, Heteropneustes fossilis. J Environ Biol 18:357–363

    CAS  Google Scholar 

  45. Soto-Blanco B, Fontenele-Noto JD, Silva DM, Reis PF, Nobrega JE (2006) Acute cattle intoxication from Nerium oleander pods. Trop Anim Health Prod 38:451–454

    PubMed  CAS  Article  Google Scholar 

  46. Srivastav AK, Srivastava SK, Srivastav SK (1997) Impact of deltamethrin on serum calcium and inorganic phosphate of freshwater catfish Heteropneustes fossilis. Bull Environ Contam Toxicol 59:841–846

    PubMed  CAS  Article  Google Scholar 

  47. Srivastav AK, Srivastava SK, Mishra D, Srivastav SK (2010) Deltamethrin-induced alterations in serum calcium and prolactin cells of a freshwater teleost, Heteropneustes fossilis. Toxicol Environ Chem 92:1857–1864

    CAS  Article  Google Scholar 

  48. Srivastava SK, Tiwari PR, Srivastav AK (1989) Chlorpyrifos induced histological changes in the gill of freshwater catfish Heteropneustes fossilis. Bolm Fisiol Anim 13:23–28

    Google Scholar 

  49. Srivastava SK, Tiwari PR, Srivastav AK (1990) Effects of chlorpyrifos on the kidney of freshwater catfish Heteropneustes fossilis. Bull Environ Contam Toxicol 45:748–751

    PubMed  CAS  Article  Google Scholar 

  50. Srivastava SJ, Singh ND, Srivastava AK, Sinha R (1995) Acute toxicity of malachite green and its effect on certain blood parameters of a catfish Heteropneustes fossilis. Aquat Toxicol 31:241–247

    CAS  Article  Google Scholar 

  51. Suzuki N, Tabata MJ, Kambegawa A, Srivastav AK, Shimada A, Takeda H, Kobayashi M, Wada S, Katsumata T, Hattori A (2006) Tributylin inhibits osteoblastic activity and disrupts calcium metabolism through an increase in plasma calcium and calcitonin levels in teleosts. Life Sci 78:2533–2541

    PubMed  CAS  Article  Google Scholar 

  52. Tiwari S, Singh A (2003) Toxic and sub-lethal effects of oleandrin on biochemical parameters of freshwater air breathing murrel, Channa punctatus (Bloch.). Indian J Exp Biol 42:413–418

    Google Scholar 

  53. Tiwari S, Singh A (2004) Control of common freshwater predatory fish, Channa punctatus, through Nerium indicum leaf extracts. Chemosphere 53:865–875

    Article  Google Scholar 

  54. Tiwari S, Singh A (2005) Possibility of using latex extracts of Nerium indicum plant for control of predatory fish Channa punctatus. Asian Fish Sci 18:161–173

    Google Scholar 

  55. Velisek J, Svobodova Z, Piackova V (2009) Effects of acute exposure to bifenthrin on some haematological, biochemical and histopathological parameters of rainbow trout (Oncorhynchus mykiss). Vet Med 54:131–137

    CAS  Google Scholar 

  56. Wang H, Cai WM, Wang WS, Yang JM (2006) Molluscicidal activity of Nerium indicum Mill, Pterocary stenoptera DC, and Rumex jponicum Houtt on Onomelania Hupensis. Biomed Environ Sci 19:245–248

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ajai K. Srivastav.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prasad, M., Kumar, A., Mishra, D. et al. Alterations in blood electrolytes of a freshwater catfish Heteropneustes fossilis in response to treatment with a botanical pesticide, Nerium indicum leaf extract. Fish Physiol Biochem 37, 505–510 (2011). https://doi.org/10.1007/s10695-010-9452-1

Download citation

Keywords

  • Calcium
  • Phosphate
  • Neriumindicum leaf extract
  • Fish
  • Hypocalcemia
  • Hypophosphatemia