Skip to main content

Development of digestive enzymes in larvae of Mayan cichlid Cichlasoma urophthalmus

Abstract

The development of digestive enzymes during the early ontogeny of the Mayan cichlid (Cichlasoma urophthalmus) was studied using biochemical and electrophoretic techniques. From yolk absorption (6 days after hatching: dah), larvae were fed Artemia nauplii until 15 dah, afterward they were fed with commercial microparticulated trout food (45% protein and 16% lipids) from 16 to 60 dah. Several samples were collected including yolk-sac larvae (considered as day 1 after hatching) and specimens up to 60 dah. Most digestive enzymes were present from yolk absorption (5–6 dah), except for the specific acid proteases activity (pepsin-like), which increase rapidly from 8 dah up to 20 dah. Three alkaline proteases isoforms (24.0, 24.8, 84.5 kDa) were detected at 8 dah using SDS–PAGE zymogram, corresponding to trypsin, chymotrypsin and probably leucine aminopeptidase enzymes, and only one isoform was detected (relative electromobility, Rf = 0.54) for acid proteases (pepsin-like) from 3 dah onwards using PAGE zymogram. We concluded that C. urophthamus is a precocious fish with a great capacity to digest all kinds of food items, including artificial diets provided from 13 dah.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alarcón FJ, Díaz M, Moyano FJ, Abellan E (1998) Characterization and functional properties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish Physiol Biochem 19:257–267

    Article  Google Scholar 

  • Alvarez-González CA, Cervantes-Trujano M, Tovar-Ramírez D, Conklin DE, Nolasco H, Gisbert E, Piedrahita R (2006) Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish Physiol Biochem 31:83–93

    Google Scholar 

  • Alvarez-González CA, Moyano-López FJ, Civera-Cercedo R, Carrasco-Chávez V, Ortiz-Galindo J, Dumas S (2008) Development of digestive enzyme activity in larvae of spotted sand bass (Palabrax maculatofasciatus). I. Biochemistry analysis. Fish Physiol Biochem 34:373–384

    Article  PubMed  Google Scholar 

  • Álvarez-González CA, Moyano-López FJ, Civera-Cerecedo R, Carrasco-Chávez V, Ortíz-Galindo J, Nolasco-Soria H, Tovar-Ramírez D, Dumas S (2010) Development of digestive enzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus II: electrophoretic analysis. Fish Physiol Biochem 36:29–37

    Article  PubMed  Google Scholar 

  • Anson ML (1938) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 22:79–89

    Article  PubMed  CAS  Google Scholar 

  • Baglole CJ, Goff GP, Wright GM (1998) Distribution and ontogeny of digestive enzymes in larval yellowtail and winter flounder. J Fish Biol 53:767–784

    Article  CAS  Google Scholar 

  • Bergmeyer HV (1974) Phosphatases methods of enzymatic analysis, vol 2. Academic Press, New York

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cahu CL, Zambonino-Infante JL (1994) Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comp Biochem Physiol 109A:213–222

    Article  CAS  Google Scholar 

  • Cahu CL, Zambonino-Infante JL (1995) Maturation of the pancreatic and intestinal function in sea bass (Dicentrarchus labrax): effect of weaning with different protein sources. Fish Physiol Biochem 14:431–437

    Article  CAS  Google Scholar 

  • Cahu CL, Ronnestad I, Grangier V, Zambonino-Infante JL (2004) Expression and activities of pancreatic enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact and hydrolyzed dietary protein; involvement of cholecystokinin. Aquaculture 238:295–308

    Article  CAS  Google Scholar 

  • Cara JB, Moyano FJ, Cardenas S, Fernandez-Diaz C, Yufera M (2003) Assessment of digestive enzyme activities during larval development of white bream. J Fish Biol 63:48–58

    Article  CAS  Google Scholar 

  • Carnevali O, Mosconi G, Cambi A, Ridolfi S, Zanuy S, Polzonetti-Magni AM (2001) Changes of lysosomal enzyme activities in sea bass (Dicentrarchus labrax) eggs and developing embryos. Aquaculture 202:249–256

    Article  CAS  Google Scholar 

  • Chan AS, Horn MH, Dickson KA, Gawlicka A (2004) Digestive enzyme activities in carnivores and herbivores: comparisons among four closely related prickleback fishes (Teleostei: Stichaeidae) from a California rocky intertidal habitat. J Fish Biol 65:848–858

    Article  CAS  Google Scholar 

  • Chávez-Sánchez MC, Martínez-Palacios CA, Martínez-Pérez G, Ross LG (2000) Phosphorus and calcium requirements in the diet of the American cichlid Cichlasoma urophthalmus (Günther). Aquac Nutr 6:1–9

    Article  Google Scholar 

  • Chen BN, Jian GQ, Martin SK, Wayne GH, Steven MC (2006) Ontogenetic development of digestive enzymes in yellowtail kingfish Seriola lalandi larvae. Aquaculture 264–271

  • Chong ASC, Hashim R, Chow-Yang L, Ali AB (2002) Partial characterization and activities of proteases from the digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture 203:321–333

    Article  CAS  Google Scholar 

  • Copeland RA (1996) Structural components of enzymes. In: Enzymes, a practical introduction to structure, mechanism and data analysis. Wiley, New York, pp 35–65

  • Cousin JCB, Baudin-Laurencin F, Gabaudan J (1987) Ontogeny of enzymatic activities in fed and fasting turbot, Scophthalmus maximus L. J Fish Biol 30:15–33

    Article  CAS  Google Scholar 

  • Darias MJ, Murray HM, Gallant JW, Astola A, Douglas SE, Yúfera M, Martínez-Rodríguez G (2006) Characterization of a partial α-amylase clone from red porgy (Pagrus pagrus): expression during larval development. Comp Biochem Physiol 143:209–218

    Article  CAS  Google Scholar 

  • Davis BJ (1964) Disc electrophoresis II. Method and application to human serum proteins. Ann NY Acad Sci 121:404–427

    Article  PubMed  CAS  Google Scholar 

  • De Haen C, Neurath H, Teller DC (1975) The phylogeny of trypsin-related serine proteases and their zymogens. New methods for the investigation of distant evolutionary relationships. J Mol Biol 92:225–259

    Article  PubMed  Google Scholar 

  • DelMar EG, Largman C, Broderick JW, Geokas MC (1979) A sensitive new substrate for chymotrypsin. Anal Biochem 99:316–320

    Article  PubMed  CAS  Google Scholar 

  • Díaz-López M, Moyano FJ, Alarcón FJ, García-Carreño FL, Navarrete del Toro MA (1998) Characterization of fish acid proteases by substrate-gel electrophoresis. Comp Biochem Physiol 121B:369–377

    Google Scholar 

  • Domínguez-Palma JC (1990) Utilización de zooplancton en la alimentación de crías de castarrica “Cichlasoma urophthalmus” (Günther, 1862) en jaulas flotantes. Undergraduate thesis, Universidad Juárez Autónoma de Tabasco. División Académica de Ciencias Básicas

  • Douglas SE, Gawlicka A, Mandla S, Gallant JW (1999) Ontogeny of the stomach in winter flounder: characterization and expression of the pepsinogen and proton pump genes and determination of pepsin activity. J Fish Biol 55:897–915

    Article  CAS  Google Scholar 

  • Erlanger B, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  PubMed  CAS  Google Scholar 

  • Espinosa H, Gaspar MT, Fuentes P (1993) Listado faunísticos de México: III Los peces dulceacuícolas mexicanos. Instituto de Biología, UNAM, México 99

    Google Scholar 

  • Fabillo MD, Herrera AA, Abucay JS (2004) Effects of delayed first feeding on the development of the digestive tract and skeletal muscles of Nile tilapia, Oreochromis niloticus L. In: Proceedings 6th international symposium on Tilapia in Aquaculture Philippine International Convention Center Roxas Boulevard, Manila, Philippines, pp 301–315

  • Folk JE, Schirmer EW (1963) The porcine pancreatic carboxypeptidase A system. J Biol Chem 238:3884–3894

    PubMed  CAS  Google Scholar 

  • García-Carreño FL, Dimes LE, Haard NF (1993) Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal Biochem 214:65–69

    Article  PubMed  Google Scholar 

  • Gawlicka A, Teh SJ, Hung SSO, Hinton DE, De la Noue J (1995) Histological and histochemical changes in the digestive tract of white sturgeon larvae during ontogeny. Fish Physiol Biochem 14:357–371

    Article  CAS  Google Scholar 

  • Gisbert E, Sarasquete MC, Willot P, Castelló-Orvay F (1999) Histochemistry of the development of the digestive system of Siberian sturgeon during early ontogeny. J Fish Biol 55:596–616

    Article  Google Scholar 

  • Green BS, McCormick MI (2001) Ontogeny of the digestive and feeding systems in the anemonefish Amphiprion melanopus. Environ Biol Fish 61:73–83

    Article  Google Scholar 

  • Guerrero-Zárate R (2007) Efecto de la temperatura en la reproducción de sexos de las mojarras nativas “castarrica” (Cichlasoma urophthalmus) y “tenguayaca” (Petenia splendida). Undergraduate thesis, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas

  • Heu MS, Kim HR, Pyeum JH (1995) Comparison of trypsin and chymotrypsin from the viscera of anchovy, Engraulis japonicus. Comp Biochem Physiol 112B:557–567

    CAS  Google Scholar 

  • Igbokwe EC, Downe AER (1978) Electrophoretic and histochemical comparison of three strains of Aedes aegypti. Comp Biochem Physiol 60B:131–136

    CAS  Google Scholar 

  • Jiménez-Martínez LD, Alvarez-González CA, Contreras-Sánchezr WM, Márquez-Couturier G, Arias-Rodriguez L, Almeida-Madrigal JA (2009) Evaluation of larval growth and survival in Mexican mojarra, Cichlasoma urophthalmus and bay snook, Petenia splendida under different initial stocking densities. J World Aquac Soc 40(6):753–761

    Article  Google Scholar 

  • Jonas E, Ragyanssszki M, Olah J, Boross L (1983) Proteolytic digestive enzymes of carnivorous (Silurus glanis L.), herbivorous (Hypophtlamichthys molitrix Val.) and omnivorous (Cyprinus carpio) fishes. Aquaculture 30:145–154

    Article  CAS  Google Scholar 

  • Kolkovski S (2001) Digestive enzymes in fish larvae and juveniles—implications and applications to formulated diets. Aquaculture 200:181–201

    Article  CAS  Google Scholar 

  • Kurokawa T, Suzuki T (1996) Formation of the diffuse pancreas and the development of digestive enzyme synthesis in larvae of the Japanese flounder Paralichthys olivaceus. Aquaculture 141:267–276

    Article  CAS  Google Scholar 

  • Kuz’mina VV, Ushakova NV (2007) Activities of proteinases in invertebrate animals–potential objects of fish nutrition. Effects of temperature, pH, and heavy metals. Zh Evol Biokhim Fiziol (Article in Russian) 43(5):404–409

    Google Scholar 

  • Kvåle A, Mangor-Jensen A, Moren M, Espe M, Hamre K (2007) Development and characterisation of some intestinal enzymes in Atlantic cod (Gadus morhua L.) and Atlantic halibut (Hippoglossus hippoglossus L.) larvae. Aquaculture 264:457–468

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lazo JP (1999) Development of the digestive system in red drum (Sciaenops ocellatus) larvae. Dissertation, The University of Texas at Austin, USA

  • Lazo J, Mendoza R, Holt GJ, Aguilera C, Arnold CR (2007) Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture 265:194–205

    Article  CAS  Google Scholar 

  • Liu ZY, Wang Z, Xu SY, Xu LN (2008) Partial characterization and activity distribution of proteases along the intestine of grass carp, Ctenopharyngodon idella (Val.). Aquac Nutr 14:31–39

    Article  CAS  Google Scholar 

  • Maraux S, Louvard D, Baratti J (1973) The aminopeptidase from hog-intestinal brush border. Biochim Biophys Acta 321:282–295

    Google Scholar 

  • Martinez I, Moyano FJ, Fernandez-Diaz C, Yufera M (1999) Digestive enzyme activity during larval development of the Senegal sole (Solea senegalensis). Fish Physiol Biochem 21:317–323

    Article  CAS  Google Scholar 

  • Martínez-Palacios CA, Ross LG (1986) The effects of temperature, body weight and hypoxia on the oxygen consumption of the Mexican mojarrra, Cichlasoma urophthalmus (Günter). Aquac Fish Manag 17:243–248

    Google Scholar 

  • Martínez-Palacios CA, Ross LG (1994) Biología y cultivo de la mojarra latinoamericana Cichlasoma urophthalmus. Consejo Nacional de Ciencia y Tecnología, México

    Google Scholar 

  • Martínez-Palacios CA, Ross LG (2004) Post-hatching geotactic behaviour and substrate attachment in Cichlasoma urophthalmus (Günther). Appl Ichthyol 20:545–547

    Article  Google Scholar 

  • Ming-Ji L, Chin-Feng W (2006) Developmental regulation of gastric pepsin and pancreatic serine protease in larvae of the euryhaline teleost Oreochromis mossambicus. Aquculture 261:1403–1412

    Google Scholar 

  • Moyano FJ, Diaz M, Alarcon FJ, Sarasquete MC (1996) Characterization of digestive enzyme activity during larval development of gilthead sea bream (Sparus aurata). Fish Physiol Biochem 15:121–130

    Article  CAS  Google Scholar 

  • Ozkizilcik S, Chu F-LE, Place AR (1996) Ontogenetic changes of lipolytic enzymes in striped bass (Morone saxatilis). Comp Biochem Physiol 113B:631–637

    CAS  Google Scholar 

  • Real-Ehuan G (2003) Masculinización de crías de mojarra castarrica Cichlasoma urophthalmus mediante la administración de 17α-metiltestosterona. Undergraduate thesis, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas

  • Ribeiro L, Zambonino-Infante JL, Cahu C, Dinis MT (1999) Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 170:465–473

    Article  Google Scholar 

  • Ribeiro L, Zambonino-Infante JL, Cahu C, Dinis MT (2002) Digestive enzymes profile of Solea senegalensis postlarvae fed Artemia and a compound diet. Fish Physiol Biochem 27:61–69

    Article  CAS  Google Scholar 

  • Robyt JF, Whelan WJ (1968) In: Radley JA (ed) Starch and its derivates. Chapman and Hall, London

  • Romano M, Rosanova P, Anteo C, Limatola E (2004) Vertebrate yolk proteins: a review. Mol Reprod Dev 69:109–116

    Article  PubMed  CAS  Google Scholar 

  • SAGARPA (2003) Anuario Estadístico de Pesca 2003. México: Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Comisión Nacional de Acuacultura y Pesca

  • Shaozhen F, Wensheng L, Haoran L (2008) Characterization and expression of the pepsinogen C gene and determination of pepsin-like enzyme activity from orange spotted grouper (Epinephelus coioides). Comp Biochem Physiol 149:275–284

    Google Scholar 

  • Tengjaroenkul B, Smith BJ, Caceci T, Smith SA (2000) Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 182:317–327

    Article  CAS  Google Scholar 

  • Tengjaroenkul B, Smith BJ, Smith SA, Chatreewongsin U (2002) Ontogenic development of the intestinal enzymes of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 211:241–251

    Article  CAS  Google Scholar 

  • Ueberschäer B (1993) Measurement of proteolytic anzyme activity: Significance and application in larval fish research. In: Walther BT, Fyhn HJ (eds) Physiological and biochemical aspects of fish development, part III. University of Bergen, Norway, pp 233–239

    Google Scholar 

  • Versaw W, Cuppett SL, Winters DD, Williams LE (1989) An improved colorimetric assay for bacterial lipase in nonfat dry milk. J Food Sci 54:232–254

    Article  Google Scholar 

  • Versichelle D, Léger P, Lavens P, Sorgeloos P (1989) L’utilisation d’Artemia. In: Barnabé G (ed) Aquaculture. Technique et Documentation, Lavoisier, Paris, pp 241–259

    Google Scholar 

  • Walter HE (1984) Proteinases: methods with hemoglobin, casein and azocoll assubstrates. In: Bergmeyern HJ (ed) Methods of enzymatic analysis, vol V. Verlag Chemie, Weinham, pp 270–277

    Google Scholar 

  • Williams DE, Reisfeld RA (1964) Disc electrophoresis in polyacrylamide gels: extension to new conditions of pH and buffers. Ann NY Acad Sci 121:373–381

    Article  PubMed  CAS  Google Scholar 

  • Wilson RP (1994) Utilization of dietary carbohydrate by fish. Aquaculture 124:67–80

    Article  CAS  Google Scholar 

  • Zambonino-Infante JL, Cahu C (1994) Development and response to a diet change of some digestive enzymes in sea bass (Dicentrarchus labrax) larvae. Fish Physiol Biochem 12(5):399–408

    Article  Google Scholar 

  • Zambonino-Infante JL, Cahu CL (2007) Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: applications to diet formulation. Aquaculture 268:98–105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

First author thanks to the Programa Estatal de Nuevos Talentos, of the Consejo de Ciencia y Tecnología, of the state of Tabasco for the fellowship grant. This study was financed by FOMIX CONACYT-Government of the State of Tabasco, through the research project TAB-2005-C06-16260 and partial funding for this research was provided by the Aquaculture Collaborative Research Support. Program accession number # 1373. The Aquaculture CRSP is funded in part by United States Agency for International Development (USAID) Grant No. LAG-G-00-96-90015-00 and by participating institutions. The opinions expressed herein are those of the author(s) and do not necessarily reflect the views of the US Agency of International Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Alvarez-González.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

López-Ramírez, G., Cuenca-Soria, C.A., Alvarez-González, C.A. et al. Development of digestive enzymes in larvae of Mayan cichlid Cichlasoma urophthalmus . Fish Physiol Biochem 37, 197–208 (2011). https://doi.org/10.1007/s10695-010-9431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-010-9431-6

Keywords