Skip to main content

Classification accuracy of algorithms for blood chemistry data for three aquaculture-affected marine fish species

Abstract

The objective of this study was determination and discrimination of biochemical data among three aquaculture-affected marine fish species (sea bass, Dicentrarchus labrax; sea bream, Sparus aurata L., and mullet, Mugil spp.) based on machine-learning methods. The approach relying on machine-learning methods gives more usable classification solutions and provides better insight into the collected data. So far, these new methods have been applied to the problem of discrimination of blood chemistry data with respect to season and feed of a single species. This is the first time these classification algorithms have been used as a framework for rapid differentiation among three fish species. Among the machine-learning methods used, decision trees provided the clearest model, which correctly classified 210 samples or 85.71%, and incorrectly classified 35 samples or 14.29% and clearly identified three investigated species from their biochemical traits.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Adham KG, Ibrahim HM, Hamed SS, Saleh RA (2002) Blood chemistry of the Nile tilapia, Oreochromis niloticus (Linnaeus, 1757) under the impact of water pollution. Aquat Ecol 36:549–557. doi:10.1023/A:1021137122046

    Article  CAS  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn J 45:5–32. doi:10.1023/A:1010933404324

    Article  Google Scholar 

  • Burtis CA, Ashwood ER, Aldrich JE (1996) Tietz fundamentals of clinical chemistry. WB Saunders, Philadelphia, PA

    Google Scholar 

  • Christofilogiannis P (1993) The veterinary approach to sea bass and sea bream. In: Brown L (ed) Aquaculture for veterinarians. Pergamon Press, Oxford, pp 379–395

    Google Scholar 

  • Cowey CB, Walton MJ (1989) Intermediary metabolism. In: Halver JE (ed) Fish Nutrition, 2nd edn. Academic Press, New York, pp 259–329

    Google Scholar 

  • Coz-Rakovac R, Strunjak-Perovic I, Topic Popovic N, Hacmanjek M, Simpraga M, Teskeredzic E (2002) Health status of wild and cultured sea bass in the northern Adriatic sea. Vet Med 47(8):222–226

    Google Scholar 

  • Coz-Rakovac R, Strunjak-Perovic I, Hacmanjek M, Topic Popovic N, Lipej Z, Sostaric B (2005) Blood chemistry and histological properties of wild and cultured sea bass (Dicentrarchus labrax) in the north Adriatic sea. Vet Res Commun 29:677–687. doi:10.1007/s11259-005-3684-z

    Article  CAS  PubMed  Google Scholar 

  • Coz-Rakovac R, Strunjak-Perovic I, Topic Popovic N, Hacmanjek M, Smuc T, Jadan M, Lipej Z, Homen Z (2008) Cage culture effects on mullets (Mugilidae) liver histology and blood chemistry profile. J Fish Biol 72:1–13. doi:10.1111/j.1095-8649.2008.01865.x

    Article  Google Scholar 

  • Goede RW, Barton BA (1990) Organismic indices and an autopsy-based assessment as indicators of health and condition in fish. In: Adams SM (ed) American fisheries symposium 8. American Fisheries Society, Bethesda, Maryland, pp 93–109

    Google Scholar 

  • Hill S (1982) A literature review of the blood chemistry of rainbow trout Salmo gairdneri. J Fish Biol 20:535–569. doi:10.1111/j.1095-8649.1982.tb03954.x

    Article  Google Scholar 

  • Hrubec TC, Smith SA, Robertson JL (2001) Age related changes in haematology and plasma chemistry values of hybrid striped bass (Morone chysops, Morone saxatilis). Vet Clin Pathol 30:8–15. doi:10.1111/j.1939-165X.2001.tb00249.x

    Article  PubMed  Google Scholar 

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174. doi:10.2307/2529310

    Article  CAS  PubMed  Google Scholar 

  • Mitchell T (1997) Machine learning. McGraw Hill, New York, USA

    Google Scholar 

  • Nagakawa H, Tetsuya U, Hideyuki M (1999) Effect of feeding regime on biological and biochemical parameters in ayu. Fish Sci 65(2):259–263

    Google Scholar 

  • Rehulka J (2003) Haematological analyses in rainbow trout Oncorhynchus mykiss affected by viral haemorrhagic septicaemica (VHS). Dis Aquat Organ 56:185–193. doi:10.3354/dao056185

    Article  CAS  PubMed  Google Scholar 

  • Strunjak-Perovic I, Coz-Rakovac R, Topic Popovic N, Jadan M (2008) Seasonality of nuclear abnormalities in gilthead sea bream Sparus aurata (L.) erythrocytes. Fish Physiol Biochem (in press)

  • Topic G, Smuc T, Sojat Z, Skala K (2005) Reimplementation of the random forest algorithm. In: Vajtersic M, Trobec R, Zinterhof P, Uhl A (eds) Proceedings of parallel numerics. theory and applications. JSI Publisher, Salzburg, pp 119–128

    Google Scholar 

  • Topic Popovic N, Strunjak-Perovic I, Coz-Rakovac R, Hacmanjek M, Jadan M (2006) Comparison of five tuna plasma analytes measured on two automated blood analyzers. Fish Physiol Biochem 32:99–103. doi:10.1007/s10695-006-0001-x

    Article  CAS  Google Scholar 

  • Witten IH, Frank E (1999) Data mining: practical machine learning tools and techniques with java implementations. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  • Wood ME, Yasutake W, Halver JE, Woodall AN (1990) Chemical and histological studies of wild and hatchery salmon in fresh water. Trans Am Fish Soc 89:301–307. doi:10.1577/1548-8659(1960)89[301:CAHSOW]2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Coz-Rakovac.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coz-Rakovac, R., Topic Popovic, N., Smuc, T. et al. Classification accuracy of algorithms for blood chemistry data for three aquaculture-affected marine fish species. Fish Physiol Biochem 35, 641–647 (2009). https://doi.org/10.1007/s10695-008-9288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-008-9288-0

Keywords

  • Machine-learning techniques
  • Sea bass
  • Sea bream
  • Mullet
  • Plasma biochemistry