Skip to main content

Increased growth hormone (GH), growth hormone receptor (GHR), and insulin-like growth factor I (IGF-I) gene transcription after hyperosmotic stress in the Brazilian flounder Paralichthys orbignyanus

Abstract

Growth hormone (GH) action is the result of an intracellular cascade initiated just after its interaction with the growth hormone receptor (GHR) located on the surface of target cells. This cascade culminates with the transcription of target genes, such as the insulin-like growth factors (IGFs), which are responsible for most GH biological effects. In addition to its central role in growth, fish GH is also involved with osmoregulatory control. Within this context, the objective of the present work was to isolate GH, GHR, and IGF-I cDNAs from the Brazilian flounder Paralichthys orbignyanus and evaluate whether these genes are induced by hyperosmotic stress. The obtained results indicated that GH mRNA had a significant peak only 24 h after hyperosmotic stress. In gills, GHR mRNA was significantly increased after 7 days. In liver, GHR and IGF-I mRNAs were significantly increased in 72 h and both reached even higher levels after 7 days. These results indicate that hyperosmotic stress can increase GH sensitivity in the gills and liver of P. orbignyanus and, consequently, improve IGF-I production. The management of this parameter could be useful in achieving better growth performance for this and other commercially important species in which GH has a direct correlation with osmoregulatory mechanisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Altinok I, Grizzle JM (2001) Effects of brackish water on growth, feed conversion and energy absorption efficiency by juvenile euryhaline and freshwater stenohaline fishes. J Fish Biol 59:1142–1152. doi:10.1111/j.1095-8649.2001.tb00181.x

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Bianchini A, Wasielesky W Jr, Miranda Filho KC (1996) Toxicity of nitrogenous compounds to juveniles of flatfish Paralichthys orbignyanus. Bull Environ Contam Toxicol 56:453–459. doi:10.1007/s001289900065

    Article  PubMed  CAS  Google Scholar 

  • Björnsson BT (1997) The biology of salmon growth hormone: from daylight to dominance. Fish Physiol Biochem 17:9–24. doi:10.1023/A:1007712413908

    Article  Google Scholar 

  • Björnsson BT, Stefansson GV, Berhr AI, Hansen T, Stefansson SO (1998) Circulating growth hormone levels in Atlantic salmon smolts following seawater transfer: effects of photoperiod regime, salinity, duration of exposure and season. Aquaculture 168:121–137. doi:10.1016/S0044-8486(98)00344-5

    Article  Google Scholar 

  • Boeuf G (1993) Salmonid smolting: a pre-adaptation to the oceanic environment. In: Rankin JC, Jensen FB (eds) Fish ecophysiology. Chapman and Hall, London, pp 105–135

    Google Scholar 

  • Bolton JP, Collie NL, Kawauchi H, Hirano T (1987) Osmoregulatory actions of growth hormone in rainbow trout (Salmo gairdneri). J Endocrinol 112:63–68

    Article  PubMed  CAS  Google Scholar 

  • Chelly J, Kaplan JC, Maire P, Gautron S, Kahn A (1988) Transcription of the dystrophin gene in human muscle and non-muscle tissue. Nature 333:858–860. doi:10.1038/333858a0

    Article  PubMed  CAS  Google Scholar 

  • Drennon K, Moriyama S, Kawauchi H, Small B, Silverstein J, Parhar I, Shepherd B (2003) Development of an enzyme-linked immunosorbent assay for the measurement of plasma growth hormone (GH) levels in channel catfish (Ictalurus punctatus): assessment of environmental salinity and GH secretogogues on plasma GH levels. Gen Comp Endocrinol 133:314–322. doi:10.1016/S0016-6480(03)00194-1

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo JL, Menezes NA (2000) Manual de peixes marinhos do sudeste do Brasil, vol 6. Universidade de São Paulo, Museu de Zoologia

    Google Scholar 

  • Henne JP, Watanabe WO (2003) Effects of light intensity and salinity on growth, survival, and whole-body osmolality of larval southern flounder Paralichthys lethostigma. J World Aquac Soc 34:450–465. doi:10.1111/j.1749-7345.2003.tb00084.x

    Article  Google Scholar 

  • Imsland AK, Foss A, Gunnarsson S, Berntssen MHG, FitzGerald R, Bonga SW, van Ham E, Nævdal G, Stefansson SO (2001) The interaction of temperature and salinity on growth and food conversion in juvenile turbot (Scophthalmus maximus). Aquaculture 198:353–367. doi:10.1016/S0044-8486(01)00507-5

    Article  Google Scholar 

  • Imsland AK, Gunnarsson S, Foss A, Stefansson SO (2003) Gill Na+, K+-ATPase activity, plasma chloride and osmolality in juvenile turbot (Scophthalmus maximus) reared at different temperatures and salinities. Aquaculture 218:671–683. doi:10.1016/S0044-8486(02)00423-4

    Article  CAS  Google Scholar 

  • Iwatani H, Inoue K, Takei Y (2005) Expression of insulin-like growth factor I gene is involved in enhanced growth of juvenile four-spine sculpin Cottus kazika in seawater. Fish Sci 71:621–626. doi:10.1111/j.1444-2906.2005.01007.x

    Article  CAS  Google Scholar 

  • Kopchick JJ, Andry JM (2000) Growth hormone (GH), GH receptor, and signal transduction. Mol Genet Metab 71:293–314. doi:10.1006/mgme.2000.3068

    Article  PubMed  CAS  Google Scholar 

  • Madsen SS, Jensen MK, Nohr J, Kristiansen K (1995) Expression of Na+-K+-ATPase in the brown trout, Salmo trutta: in vivo modulation by hormones and seawater. Am J Physiol Regul Integr Comp Physiol 269:1339–1345

    Google Scholar 

  • Mancera JM, McCormick SD (1998) Osmoregulatory actions of the GH/IGF axis in non-salmonid teleosts. Comp Biochem Physiol B 121:43–48. doi:10.1016/S0305-0491(98)10112-8

    Article  Google Scholar 

  • McCormick SD (1996) Effects of growth hormone and insulin-like growth factor I on salinity tolerance and gill Na+, K+-ATPase in Atlantic salmon (Salmo salar): interaction with cortisol. Gen Comp Endocrinol 101:3–11. doi:10.1006/gcen.1996.0002

    Article  PubMed  CAS  Google Scholar 

  • McCormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zool 41:781–794. doi:10.1668/0003-1569(2001)041[0781:ECOOIT]2.0.CO;2

    Article  CAS  Google Scholar 

  • Pelis RM, McCormick SD (2001) Effects of growth hormone and cortisol on Na+-K+-2Cl cotransporter localization and abundance in the gills of Atlantic salmon. Gen Comp Endocrinol 124:134–143. doi:10.1006/gcen.2001.7703

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Sánchez J (2000) The involvement of growth hormone in growth regulation, energy homeostasis and immune function in the gilthead sea bream (Sparus aurata): a short review. Fish Physiol Biochem 22:135–144. doi:10.1023/A:1007816015345

    Article  Google Scholar 

  • Pérez-Sánchez J, Le Bail P-Y (1999) Growth hormone axis as marker of nutritional status and growth performance in fish. Aquaculture 177:117–128. doi:10.1016/S0044-8486(99)00073-3

    Article  Google Scholar 

  • Sakamoto T, Hirano T (1993) Expression of insulin-like growth factor I gene in osmoregulatory organs during seawater adaptation of the salmonid fish: possible mode of osmoregulatory action of growth hormone. Proc Natl Acad Sci USA 90:1912–1916. doi:10.1073/pnas.90.5.1912

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, McCormick SD, Hirano T (1993) Osmoregulatory actions of growth hormone and its mode of action in salmonids: a review. Fish Physiol Biochem 11:155–164. doi:10.1007/BF00004562

    Article  CAS  Google Scholar 

  • Sampaio LA, Bianchini A (2002) Salinity effects on osmoregulation and growth of the euryhaline flounder Paralichthys orbignyanus. J Exp Mar Biol Ecol 269:187–196. doi:10.1016/S0022-0981(01)00395-1

    Article  CAS  Google Scholar 

  • Sampaio LA, Bianchini A, Cerqueira VR (2001) Growth of juvenile Brazilian flounder, Paralichthys orbignyanus, cultured at different salinities. J Appl Aquac 11:67–75. doi:10.1300/J028v11n01_06

    Article  Google Scholar 

  • Sampaio LA, Freitas LS, Okamoto MH, Louzada LR, Rodrigues RV, Robaldo RB (2007) Effects of salinity on Brazilian flounder Paralichthys orbignyanus from fertilization to juvenile settlement. Aquaculture 262:340–346. doi:10.1016/j.aquaculture.2006.09.046

    Article  CAS  Google Scholar 

  • Silveira MPM, Cousin JCB, Haimovici M (1995) Estrutura ovárica e testicular do linguado Paralichthys orbignyanus (Valenciennes, 1839). Atlântica 17:135–152

    Google Scholar 

  • Small BC, Murdock CA, Waldbieser GC, Peterson BC (2006) Reduction in channel catfish hepatic growth hormone receptor expression in response to food deprivation and exogenous cortisol. Domest Anim Endocrinol 31:340–356. doi:10.1016/j.domaniend.2005.12.003

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Akira S (2000) STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev 11:199–207. doi:10.1016/S1359-6101(00)00005-8

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Shepherd BS, Nichols AJ, Dunham RA, Chen TT (2001) Influence of environmental salinity on messenger RNA levels of growth hormone, prolactin, and somatolactin in pituitary of the channel catfish (Ictalurus punctatus). Mar Biotechnol (NY) 3:205–217. doi:10.1007/s101260000061

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    Article  PubMed  CAS  Google Scholar 

  • Wasielesky W, Miranda Filho K, Bianchini A (1995) Tolerância do linguado Paralichthys orbignyanus à salinidade. Braz Arch Biol Technol 38:385–395

    CAS  Google Scholar 

  • Wasielesky W, Bianchini A, Miranda Filho K (1997) Tolerancia a la temperatura de juveniles de lenguado Paralichthys orbignyanus. Frente Maritimo 17A:55–60

    Google Scholar 

  • Watanabe WO, Feeley MW, Ellis SC, Ellis EP (1998) Light intensity and salinity effects on eggs and yolk sac larvae of the summer flounder. Prog Fish Cult 60:9–19. doi:10.1577/1548-8640(1998)060<0009:LIASEO>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Proc. No. 01/1602.5—Brazil), Universidade Federal do Rio Grande (FURG, Brazil) and Programa de Pós-Graduação em Aqüicultura (PPGAq-FURG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. Marins.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meier, K.M., Figueiredo, M.A., Kamimura, M.T. et al. Increased growth hormone (GH), growth hormone receptor (GHR), and insulin-like growth factor I (IGF-I) gene transcription after hyperosmotic stress in the Brazilian flounder Paralichthys orbignyanus . Fish Physiol Biochem 35, 501–509 (2009). https://doi.org/10.1007/s10695-008-9287-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-008-9287-1

Keywords

  • Hyperosmotic stress
  • Growth
  • Osmoregulation
  • Semi-quantitative RT-PCR