Skip to main content

AMP-deaminase from goldfish white muscle: regulatory properties and redistribution under exposure to high environmental oxygen level

Abstract

AMP-deaminase was partially purified from white skeletal muscle of goldfish, Carassius auratus. The enzyme was highly stable, showing virtually no change in activity at 1 month following the purification process when stored in 1 M KCl at 2–4°C. The specific activity of the purified enzyme was 130–150 U/mg protein, with a pH optimum of about pH 6.5. AMP-aminohydrolase (AMPD) showed non-Michaelis–Menten kinetics, with a S0.5 (half saturation by the substrate) for AMP of 0.73 ± 0.03 mM, a Hill coefficient of 2.01 ± 0.26, and a V max (maximum velocity) of 176 ± 46 U/mg protein. Both sodium and potassium ions activated goldfish AMPD at low concentrations, with maximal activation at about 80 mM of each chloride salt, whereas higher concentrations became inhibitory. Magnesium and calcium ions also inhibited goldfish muscle AMPD, as did phosphate and fluoride; at a concentration of 8 mM, each anion reduced activity by about 66%. ADP and ATP were strong activators and both demonstrated concentration-dependent activation, with maximal effects at 0.5–1.5 mM. Fish exposure to a high concentration of oxygen (18–20 mg/l against 5–6 mg/l in the control) and recovery to the initial level induced a redistribution of AMPD between free and bound forms in goldfish white muscle and brain in a tissue-dependent manner. A spatial–temporal redistribution may be among the mechanisms regulating enzyme operation in vivo. Possible regulatory mechanisms of AMP-deaminase function in fish muscle are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brooks SPJ (1992) A simple computer program with statistical tests for the analysis of enzyme kinetics. Biotechniques 213:906–911

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Hisatome I, Morisaki T, Kamma H, Sugama T, Morisaki H, Ohtahara A, Holmes EW (1998) Control of AMP deaminase 1 binding to myosin heavy chain. Am J Physiol Cell Physiol 275:C870–C881

    CAS  Google Scholar 

  • Janero DR, Yarwood C (1995) Oxidative modulation of rabbit cardiac adenylate deaminase. J Biochem 306:421–427

    CAS  Google Scholar 

  • Kaletha K, Thebault M, Raffin J-P (1991) Comparative studies on heart and skeletal muscle AMP-deaminase from rainbow trout (Salmo gairdneri). Comp Biochem Physiol B99(4):751–754

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein JM (1972) Ammonia production in muscle and tissues: the purine nucleotide cycle. Physiol Rev 52:382–414

    CAS  Google Scholar 

  • Lushchak VI (1992) The lactate dehydrogenase interaction with the structural cell elements: the possible physiological significance. Biochemistry (Moscow) 57(8):1142–1154

    CAS  Google Scholar 

  • Lushchak VI (1996) Functional role and properties of AMP-deaminase. Biochemistry (Moscow) 61(2):143–154

    Google Scholar 

  • Lushchak VI (2007) Free radical oxidation of proteins and its relationship with functional state of organisms. Biochemistry (Moscow) 72(8):995–1017

    Article  Google Scholar 

  • Lushchak VI, Bagnyukova TV (2006) Effects of different environmental oxygen levels on free radical processes in fish. Comp Biochem Physiol B144:283–289

    Google Scholar 

  • Lushchak VI, Storey KB (1994a) Effect of exercise on the properties of AMP-deaminase from trout white muscle. Int J Biochem 26(10/11):1305–1312

    Article  CAS  Google Scholar 

  • Lushchak VI, Storey KB (1994b) Influence of exercise on the distribution of enzymes in trout white muscle and kinetic properties of AMP-deaminase from free and bound fractions. Fish Physiol Biochem 13(5):407–418

    Article  CAS  Google Scholar 

  • Lushchak VI, Storey KB (1995) Purification and characterization of AMP-deaminase from trout white muscle. Biochemistry (Moscow) 60(2):270–277

    CAS  Google Scholar 

  • Lushchak VI, Smirnova YD, Storey KB (1998) AMP-deaminase from sea scorpion white muscle: properties and redistribution under hypoxia. Comp Biochem Physiol B119:611–618

    Google Scholar 

  • Lushchak VI, Lushchak LP, Mota AA, Hermes-Lima M (2001) Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am J Physiol Regul Integr Comp Physiol 280:R100–R107

    PubMed  CAS  Google Scholar 

  • Lushchak VI, Bagnyukova TV, Lushchak OV, Storey JM, Storey KB (2005a) Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. Int J Biochem Cell Biol 37:1319–1330

    Article  PubMed  CAS  Google Scholar 

  • Lushchak VI, Bagnyukova TV, Husak VV, Luzhna LI, Lushchak OV, Storey KB (2005b) Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int J Biochem Cell Biol 37:1670–1680

    Article  PubMed  CAS  Google Scholar 

  • Lushchak VI, Husak VV, Storey KB (2008) Regulation of AMP-deaminase activity from white muscle of common carp Cyprinus carpio. Comp Biochem Physiol 149(2):362–369

    Article  Google Scholar 

  • Makarewicz W (1969) AMP-aminohydrolase in muscle of elasmobranch fish. Purification procedure and properties of the purified enzyme. Comp Biochem Physiol 29:1–26

    Article  PubMed  CAS  Google Scholar 

  • Mardanian SS, Hairapetian HL, Haroutunian AV (1996) Modification of histidine in rat skeletal muscle AMP-deaminase with diethyl pyrocarbonate. Biochemistry (Moscow) 61(10):1237–1241

    Google Scholar 

  • Mommsen TP, Hochachka PW (1988) The purine nucleotide cycle as two temporally separated metabolic units: a study on trout muscle. Metabolism 37(6):552–556

    Article  PubMed  CAS  Google Scholar 

  • Nagel-Starczynowska G, Nowak G, Kaletha K (1991) Purification and properties of AMP-deaminase from human uterine smooth muscle. Biochim Biophys Acta 1037:470–473

    Google Scholar 

  • Nechyporenko Z, Pohrebinska EN (1949) Deamination of adenilate acid in a heart muscle. Ukr Biochem J (Ukraine) 21(2):150–161

    Google Scholar 

  • Parnas JK (1929) Über die ammoniakbildung im muskel und ihren zusammenhang mit function und zustandsanderug.VI. Der zusammenhang der ammoniakbildung mit der umwandlung des adeninnucleotids zu inosinsaure. Biochemistry 206:16–38

    CAS  Google Scholar 

  • Purzycka-Preis J, Żydowo M (1969) Purification and some properties of muscle AMP-aminohydrolase from carp (Cyprinus carpio). Acta Biochim Polon 16:235–242

    PubMed  CAS  Google Scholar 

  • Raffin JP (1983) AMP deaminase from dogfish erythrocytes: purification and some properties. Comp Biochem Physiol B75:461–464

    Google Scholar 

  • Raffin JP (1984) Purification and properties of trout gill AMP deaminase. J Comp Physiol 154:55–63

    CAS  Google Scholar 

  • Raffin JP (1986a) Activation of trout gill AMP deaminase by an endogenous proteinase-I. Effects on the regulatory properties of the enzyme. Comp Biochem Physiol 85B(1):157–162

    CAS  Google Scholar 

  • Raffin JP (1986b) Activation of trout gill AMP deaminase by an endogenous proteinase-III. Comparative studies on the gill AMP deaminase from different fresh water and sea water teleosts. Comp Biochem Physiol 85B(1):173–182

    CAS  Google Scholar 

  • Raffin JP (1986c) Activation of trout gill AMP deaminase by an endogenous proteinase-II. Modification of the properties of the enzyme during starvation, pollution and salinity changes. Comp Biochem Physiol 85B(1):163–171

    CAS  Google Scholar 

  • Raffin JP, Thebault MT (1991) AMP deaminase from equine muscle: purification and determination of regulatory properties. Int J Biochem 23(10):1069–1078

    Article  PubMed  CAS  Google Scholar 

  • Raffin JP, Izem L, Thebault MT (1993) Amplification of myoadenylate deaminase during evolution-II. Purification and properties of the enzyme from two elasmobranch fish, Scyliorhinus canicula and Raja clavata. Comp Biochem Physiol B106(4):999–1007

    Google Scholar 

  • Rundell KW, Tullson P, Terjung RL (1993) AMP deaminase binding in rat skeletal muscle after high-intensity running. J Appl Physiol 74:2004–2006

    Article  PubMed  CAS  Google Scholar 

  • Sammons DW, Chilson OP (1978) AMP-deaminase: stage-specific isozymes in differentiating chick muscle. Arch Biochem Biophys 191:561–570

    Article  PubMed  CAS  Google Scholar 

  • Smiley KL, Berry AJ, Suelter CH (1967) An improved purification, crystallization, and some properties of rabbit muscle 5′-adenilic acid deaminase. J Biol Chem 242(10):2502–2506

    PubMed  CAS  Google Scholar 

  • Szydlowska M, Chodorowski Z, Rybakowska I, Nagel-Starczynowska G, Kaletha K (2004) Full-size form of human liver AMP-deaminase? Mol Cell Biochem 266(1–2):133–137

    Article  PubMed  CAS  Google Scholar 

  • Szweda LI, Stadtman ER (1992) Iron-catalyzed oxidative modification of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. Structural and functional changes. J Biol Chem 267(5):3096–3100

    PubMed  CAS  Google Scholar 

  • Tavazzi B, Amorini AM, Fazzina G, Pierro DD, Tuttobene M, Giardina B, Lazzarino G (2001) Oxidative stress induces impairment of human erythrocyte energy metabolism through the oxygen radical-mediated direct activation of AMP-deaminase. J Biol Chem 276(51):48083–48092

    PubMed  CAS  Google Scholar 

  • van den Thillart G, van Waarde A (1985) Teleosts in hypoxia: aspects of anaerobic metabolism. Mol Physiol 8:393–409

    Google Scholar 

  • van den Thillart G, van Berge-Henegouwen M, Kesbeke F (1983) Anaerobic metabolism of goldfish, Carassius auratus (L.): ethanol and CO2 excretion rates and anoxia tolerance at 20, 10 and 5°C. Comp Biochem Physiol A76:295–300

    Google Scholar 

  • Vig E, Nemcsok J (1989) The effect of hypoxia and paraquat on the superoxide dismutase activity in different organs of carp, Cyprinus carpio L. J Fish Biol 35:23–25

    Article  CAS  Google Scholar 

  • Walton MJ, Cowey CB (1977) Aspects of ammoniogenesis in rainbow trout, Salmo gairdneri. Comp Biochem Physiol B57:143–149

    Google Scholar 

  • Zernov SA (1934) General hydrobiology. State Publisher of Biological and Medical Literature, Moscow

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant of the Ministry of Education and Sciences of Ukraine (no. 0106U002245) to VIL and by a discovery grant from the NSERC Canada to KBS. We express a special thank to two anonymous referees, whose highly professional and well-disposed work has helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr I. Lushchak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lushchak, V.I., Husak, V.V., Storey, J.M. et al. AMP-deaminase from goldfish white muscle: regulatory properties and redistribution under exposure to high environmental oxygen level. Fish Physiol Biochem 35, 443–452 (2009). https://doi.org/10.1007/s10695-008-9270-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-008-9270-x

Keywords

  • AMP-deaminase
  • Carassius auratus
  • Goldfish
  • Purification
  • Redistribution