Skip to main content

Curcumin analogue inhibits lipid peroxidation in a freshwater teleost, Anabas testudineus (Bloch)—an in vitro and in vivo study

Abstract

The effect of a synthetic curcumin analogue (salicylcurcumin) on fish lipid peroxidation was investigated in both in vitro and in vivo conditions using a teleost model Anabas testudineus (Bloch). Curcumin analogue inhibited the formation of lipid peroxidation products and thiobarbituric acid reactive substances (TBARS) content at the three concentrations (10−2 M, 10−3 M and 10−4 M) in vitro. TBARS content was reduced by 80% in the liver and 68% in brain by the higher concentration of salicylcurcumin. For in vivo study, salicylcurcumin (0.5%) was supplemented along with the basal feed for a period of 60 days. It produced a 60% reduction in liver TBARS content. The antioxidant enzyme superoxide dismutase (SOD) was stimulated, whereas catalase (CAT) and glutathione peroxidase (GPx) were inhibited. Glutathione (GSH) was reduced and glutathione reductase (GR) unchanged. Even though there was an increase in SOD activity, the CAT and GPx did not increase accordingly, maybe due to the direct scavenging of H2O2 by salicylcurcumin. The protein content also increased in the curcumin-fed animals, indicating a positive growth-promoting effect. Therefore, it would be beneficial to supplement salicylcurcumin along with the aquaculture feed in order to help the fish to cope with adverse conditions in the environment. This would increase the survival rate, disease resistance and ultimately the growth rate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Allen PC, Danforth HD, Augustine PC (1998) Dietary modulation of avian coccidiosis. Int J Parasitol 28:1131–1140. doi:10.1016/S0020-7519(98)00029-0

    Article  PubMed  CAS  Google Scholar 

  • Apisariyakul A, Vanittanakom N, Buddhasukh D (1995) Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J Ethnopharmacol 49(3):163–169. doi:10.1016/0378-8741(95)01320-2

    Article  PubMed  CAS  Google Scholar 

  • Arun N, Nalini N (2002) Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods Hum Nutr 57:41–52. doi:10.1023/A:1013106527829

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–278. doi:10.1016/0003-2697(71)90370-8

    Article  PubMed  CAS  Google Scholar 

  • Benke GM, Cheevar KC (1974) Comparative toxicity, anticholinesterase action and metabolism of methyl parathion and parathion in sun fish and mice. Toxicol Appl Pharmacol 28:97–109. doi:10.1016/0041-008X(74)90135-5

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Deshpande UR, Gadre SG, Raste AS, Pillai DS, Bhide V, Samuel AM (1998) Protective effect of turmeric (Curcuma longa L.) extract on carbontetrachloride-induced liver damage in rats. Indian J Exp Biol 36:573–577

    PubMed  CAS  Google Scholar 

  • Dinesh Babu KV, Rajasekharan KN (1994) Simplified conditions for the synthesis of curcumin I and other curcuminoids. Org Prep Proced Int 26:674–677

    Article  Google Scholar 

  • Donatus IA, Sardjoko J, Vermeulen NPE (1990) Cytotoxic and cytoprotective activities of curcumin: effects on paracetamol-induced cytotoxicity, lipid peroxidation and glutathione depletion in rat hepatocytes. Biochem Pharmacol 39:1869–1875. doi:10.1016/0006-2952(90)90603-I

    Article  PubMed  CAS  Google Scholar 

  • D’Souza HP, Prabhu HR (2006) In vitro inhibition of lipid peroxidation in fish by turmeric (Curcuma longa). Indian J Clin Biochem 21(2):138–141. doi:10.1007/BF02912929

    Article  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–42. doi:10.2307/3001478

    Article  Google Scholar 

  • Elizabeth K, Rao MNA (1990) Oxygen radical scavenging activity of curcumin. Int J Pharm 58:237–240. doi:10.1016/0378-5173(90)90201-E

    Article  Google Scholar 

  • Eshrat H, Ali Hussain M (2002) Hypoglycemic, hypolipidemic and antioxidant properties of combination of curcumin from Curcuma longa, linn, and partially purified product from Abroma augusta, linn. in streptozotocin induced diabetes. Indian J Clin Biochem 17(2):33–43. doi:10.1007/BF02867969

    Article  Google Scholar 

  • Gabriel O (1971) Analytical disc gel electrophoresis. Methods Enzymol 22:565–578. doi:10.1016/0076-6879(71)22041-3

    Article  Google Scholar 

  • Hardy R (1980) Fish feed formulation. Lectures presented at the FAO/UNDP Training Course in Fish Feed Technology, held at the College of Fisheries. University of Washington, Seattle, pp 233–240

    Google Scholar 

  • Joe B, Vijaykumar M, Lokesh B (1997) Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44(2):97–111. doi:10.1080/10408690490424702

    Article  CAS  Google Scholar 

  • Kato K, Ito H, Kamei K, Iwamoto I (1998) Stimulation of the stress-induced expression of stress proteins by curcumin in cultured cells and in rat tissues in vivo. Cell Stress Chaperons 3:152–160

    Article  CAS  Google Scholar 

  • Kelloff GJ, Crowell JA, Steele VE, Lubet RA, Malone WA, Boone CW et al (2000) Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J Nutr 130:467S–471S

    PubMed  CAS  Google Scholar 

  • Livingstone DR (2001) Contaminant stimulated reactive oxygen production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666. doi:10.1016/S0025-326X(01)00060-1

    Article  PubMed  CAS  Google Scholar 

  • Livingstone DR (2003) Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Rev Med Vet 154:427–430

    CAS  Google Scholar 

  • Manju M, Sherin TG, Rajeesha KN, Sreejith P, Rajasekharan KN, Oommen OV (2008) Curcumin and its derivatives prevent hepatocyte lipid peroxidation in Anabas testudineus. J Fish Biol 73:1–13

    Article  CAS  Google Scholar 

  • Mishra HP, Fridovich I (1977) Superoxide dismutase and peroxidase; a positive activity staining applicable to poly acrylamide gel electrophorograms. Arch Biochem Biophys 183:511–515. doi:10.1016/0003-9861(77)90386-1

    Article  Google Scholar 

  • Nagabhushan M, Amonker AJ, Bhide S (1981) In vitro antimutagenicity of curcumin against environmental mutagens. Food Chem Toxicol 25:545–547. doi:10.1016/0278-6915(87)90207-9

    Google Scholar 

  • Nichans WG, Samuelsson B (1968) Formation of malondialdehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 6:126–130. doi:10.1111/j.1432-1033.1968.tb00428.x

    Article  Google Scholar 

  • Nielsen F, Mikkelsen BB, Andersen HR, Grandjean P (1997) Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem 43:1209–1214

    PubMed  CAS  Google Scholar 

  • Park EJ, Jeon CH, Ko G, Kim J, Sohn DH (2000) Protective effect of curcumin in rat liver injury induced by carbon tetrachloride. J Pharm Pharmacol 52:437–440. doi:10.1211/0022357001774048

    Article  PubMed  CAS  Google Scholar 

  • Rajalakshmi D, Narasimhan S (1996) Food antioxidants: sources and methods of evaluation. In: Madhavi DL, Deshpande SS, Salunkhe DK (eds) Food antioxidants: technological, toxicological, and health perspectives. Mercel Dekker, New York

    Google Scholar 

  • Ramírez-Tortosa MC, Mesa MD, Aguilera MC, Quiles JL, Baró L, Ramirez-Tortosa CL et al (1999) Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. Atherosclerosis 147:371–378. doi:10.1016/S0021-9150(99)00207-5

    Article  PubMed  Google Scholar 

  • Rasmussen HB, Christensen SB, Kvist LP, Karazmi A (2000) A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa. Planta Med 66:396–398. doi:10.1055/s-2000-8533

    Article  PubMed  CAS  Google Scholar 

  • Ruby JA, Kuttan G, Dinesh Babu KV, Rajasekharan KN, Kuttan R (1995) Anti-tumour and free radical scavenging activity of synthetic curcuminoids. Int J Pharm 131:1–7

    Google Scholar 

  • Ruby JA, Kuttan G, Dinesh Babu KV, Rajasekharan KN, Kuttan R (1998) Anti-inflammatory activity of natural and synthetic curcuminoids. Pharm Pharmacol Commun 4:103–106

    Google Scholar 

  • Slater CH, Schreck CB (1997) Physiological levels of testosterone kill salmonid leukocytes in vitro. Gen Comp Endocrinol 106:113–119. doi:10.1006/gcen.1996.6858

    Article  PubMed  CAS  Google Scholar 

  • Soudamini KK, Kuttan R (1989) Inhibition of chemical carcinogenesis by curcumin. J Ethnopharmacol 27:227–233. doi:10.1016/0378-8741(89)90094-9

    Article  PubMed  CAS  Google Scholar 

  • Srivastava R, Puri V, Srimal RC, Dhawan BN (1986) Effect of curcumin on platelet aggregation and vascular prostacyclin synthesis. Arzneim Forsch 36:715–717

    CAS  Google Scholar 

  • Suarez A, Faus MJ, Gil A (1996) Dietary long-chain polyunsaturated fatty acids modify heart, kidney, and lung fatty acid composition in weanling rats. Lipids 31:345–348. doi:10.1007/BF02529883

    Article  PubMed  CAS  Google Scholar 

  • Sultan ALSI (2003) The effect of Curcuma longa (turmeric) on overall performance of broiler chickens. Int J Poult Sci 5:351–353

    Google Scholar 

  • Sun Y, Elwell JH, Oberley LW (1988) A simultaneous visualisation of the antioxidant enzymes glutathione peroxidase and catalase on polyacrylamide gels. Free Radic Res Commun 5:67–75

    Article  PubMed  CAS  Google Scholar 

  • Sunny F, Lakshmy PS, Oommen OV (2002) Rapid action of cortisol and testosterone on lipogenic enzymes in a fresh water fish Oreochromis mossambicus: short-term in vivo and in vitro study. Comp Biochem Physiol 131:297–304. doi:10.1016/S1096-4959(02)00023-4

    Article  Google Scholar 

  • Thomas SG, Keerthi VS, Rajasekharan KN (2006) Curcuminoid synthesis using microwave. Ann. IITM, Chem Symp, Chennai

  • Vanveld PA (1990) Absorption and metabolism of dietary xenobiotics by the intestine of fish. Rev Aquat Sci 2:185–203

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank The Council of Scientific and Industrial Research (CSIR), New Delhi, for providing the Senior Research Fellowship (MM) and University Grants Commission-Special Assistance Programme (UGC-SAP) for the infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oommen Vilaverthottathil Oommen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manju, M., Sherin, T.G., Rajasekharan, K.N. et al. Curcumin analogue inhibits lipid peroxidation in a freshwater teleost, Anabas testudineus (Bloch)—an in vitro and in vivo study. Fish Physiol Biochem 35, 413–420 (2009). https://doi.org/10.1007/s10695-008-9266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-008-9266-6

Keywords

  • Anabas testudineus
  • Antioxidant
  • Reactive oxygen species
  • Growth