Skip to main content

Effect of in vitro exposure to Vibrio vulnificus on hydroelectrolytic transport and structural changes of sea bream (Sparus aurata L.) intestine

Abstract

The everted gut sac technique has been used to investigate the effect of Vibrio vulnificus on water and electrolyte (Na+, K+, Cl, HCO3 ) transport on the intestine of sea bream (Sparus aurata L.). Both the anterior and the posterior intestine were incubated in a medium containing 108 V. vulnificus cells ml−1 at 25°C for 2 h. The presence of V. vulnificus resulted in a significant reduction (P < 0.05) of water absorption in the anterior intestine, while sodium absorption in the anterior (P < 0.01) and posterior (P < 0.05) intestine was elevated. Chloride absorption was increased, but the changed was not significant, while potassium absorption decreased significantly (P < 0.05), but only in the posterior intestine. Incubation the sea bream intestine with V. vulnificus did not affect carbonate secretion in the anterior segment, whereas high secretion was stimulated in the posterior segment (P < 0.01). Histological evaluations demonstrated damage in the anterior intestine of sea bream that was characterized by the detachment of degenerative enterocytes, alterations in the microvilli, and the presence of a heterogenous cell population, indicating inflammation. Based on our results, we conclude that V. vulnificus caused cell damage to the intestine of sea bream and that the anterior intestine is more susceptible than the posterior part of the intestine. Several hypotheses are suggested to explain our observations, such as the presence of higher numbers of villosities in the anterior intestine than in the posterior one and/or the presence of endogenous bacteria in the posterior intestine which may have a protector role.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abatomi AB, Adenivi KO, Isfchei CO (1994) Effect of malnourishment on intestinal glucose and fluid transport in rats. Acta Physiol Hung 82:187–193

    Google Scholar 

  • Ando M, Nagashima K (1996) Intestinal Na+ and Cl levels control drinking behavior in the sea water-adapted eel Anguilla japonica. J Exp Biol 199:711–716

    PubMed  CAS  Google Scholar 

  • Aoki M, Kaneko T, Katoh F, Hasegawa S, Sutsui N, Aida K (2003) Intestinal water absorption through aquaporin 1 expressed in the apical membrane of mucosal epithelial cells in sea water-adapted Japanese eel. J Exp Biol 206:3495–3505. doi:10.1242/jeb.00579

    Article  PubMed  Google Scholar 

  • Balebona MC, Morinigo JJ, Borrego JJ (2001) Hydrophobicity and adhesion to fish cells and mucus of Vibrio strains isolated from infected fish. Int Microbiol 4:21–26

    PubMed  CAS  Google Scholar 

  • Bakke-McKellep AM, Penn MH, Salas PM, Refstie S, Sperstad S, Landsverk T et al (2007) Effect of dietary soyabean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). Br J Nutr 97(4):699–713. doi:10.1017/S0007114507381397

    Article  PubMed  CAS  Google Scholar 

  • Barthel L, Woodley JF, Kenworthy S, Houin G (1998) An improved everted gut sac as a simple and accurate technique to measure paracellular transport across the small intestine. Eur J Drug Metab Pharmacokinet 23(2):313–323

    Google Scholar 

  • Blanchard J, Grosell M (2006) Copper toxicity across salinities from freshwater to sea water in the euryhaline fish Fundulus heteroclitus: is copper an ionoregulatory toxicant in high salinities? Aquat Toxicol 80(2):131–139. doi:10.1016/j.aquatox.2006.08.001

    Article  PubMed  CAS  Google Scholar 

  • Bucking C, Wood CM (2006) Gastrointestinal processing of Na+, Cl, and K+ during digestion: implications for homeostatic balance in fresh water rainbow trout. Am J Physiol Regul Integr Comp Physiol 291(6):R1764–R1772. doi:10.1152/ajpregu.00224.2006

    PubMed  CAS  Google Scholar 

  • Buddington RK, Chen JW, Diamond J (1987) Genetic and phenotypic adaptation of intestinal transport to diet in fish. J Physiol 34:261–281

    Google Scholar 

  • Cahill MM (1990) Bacterial flora of fish a review. Microb Ecol 19:21–41. doi:10.1007/BF02015051

    Article  Google Scholar 

  • Chabrillón M, Rico RM, Arijo S, Díaz-Rosales P, Balebona MC, Moriñigo MA (2005) Interactions of microorganisms isolated from gilthead sea bream, Sparus aurata L. on Vibrio harveyi, a pathogen of farmed Senegalese sole, Solea senegalensis (Kaup). J Fish Dis 28(9):531–537. doi:10.1111/j.1365-2761.2005.00657.x

    Article  PubMed  Google Scholar 

  • Charpin G, Chikh-Isaa AR, Guignard H, Jourdan G, Dumas C, Pansu D et al (1992) Effect of sorbin on duodenal absorption of water and electrolyte in the rat. Gastroenterology 103:1568–1573

    PubMed  CAS  Google Scholar 

  • Chaves-Pozo E, Pelegrín P, García-Castillo J, García-Ayala A, Mulero V, Meseguer J (2004) Acidophilic granulocytes of the marine fish gilthead sea bream (Sparus aurata L.) produce interleukin-1 beta following infection with Vibrio anguillarum. Cell Tissue Res 316(2):189–195. doi:10.1007/s00441-004-0875-9

    Article  PubMed  CAS  Google Scholar 

  • Chikh-Isaa AR, Gharzouli A, Charpin G, Descroix-Vagne M, Pansu D (1992) Comparison of VIP induced electrolyte secretion at three levels in rat small intestine. Reprod Nutr Dev 32(1):37–45. doi:10.1051/rnd:19920104

    Article  Google Scholar 

  • Chopra AK, Xu XJ, Ribardo D, Gonzalez M, Kuhl K, Peterson JW et al (2000) The cytotoxic enterotoxin of Aeromonas hydrophila induced pro-inflammatory cytokine production and activate arachidonic acid metabolism in macrophages. Infect Immun 68:2808–2818. doi:10.1128/IAI.68.5.2808-2818.2000

    Article  PubMed  CAS  Google Scholar 

  • Dierckens KR, Vandenberghe J, Beladjal L, Huys G, Mertens J, Swings J (1998) Aeromonas hydrophila causes “black diseases” in fairy shrimps Anostraca crustacean. J Fish Dis 21:113–119. doi:10.1046/j.1365-2761.1998.00085.x

    Article  Google Scholar 

  • Evans DH (1993) Osmotic and ionic regulation. In: Evans DH (ed) The physiology of fish, 1st edn. CRC Press, Boca Raton, pp 315–341

  • Gibson-Kueh S, Netto P, Ngoh-Lim GH, Chang SF, Ho LL, Qin QW et al (2003) The pathology of systemic iridoviral disease in fish. J Comp Pathol 129:111–119. doi:10.1016/S0021-9975(03)00010-0

    Article  PubMed  CAS  Google Scholar 

  • Grosell M, Wood CM, Wilson RW, Bury NR, Hogstrand C, Rankin C et al (2005) Bicarbonate secretion plays a role in chloride and water absorption of the European flounder intestine. Am J Physiol 288:R936–R946

    CAS  Google Scholar 

  • Khemiss F, Ghoul-Mazgar S, Moshtaghie AA, Saidane D (2006) Study of Grewia tenax fruit on iron absorption by everted gut sac. J Ethnopharmacol 103:90–98. doi:10.1016/j.jep.2005.07.017

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Imain M, Ishitaka Y, Kawaguchi Y (2004) Histological studies of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis (Temminck and schlegel). J Fish Dis 27(8):451–457. doi:10.1111/j.1365-2761.2004.00563.x

    Article  PubMed  CAS  Google Scholar 

  • Laiz-Carrión R, Guerreiro PM, Fuentes J, Canario AV, Martín Del Río MP, Mancera JM (2005) Branchial osmoregulatory response to salinity in the gilthead sea bream, Sparus auratus. J Exp Zoolog A Comp Exp Biol 1303(7):563–576

    Article  Google Scholar 

  • Larsen EH, Sorensen JB, Sorensen JN (2002) Analysis of the sodium recirculation theory of solute-coupled water transport in small intestine. J Physiol 542:33–35. doi:10.1113/jphysiol.2001.013248

    Article  PubMed  CAS  Google Scholar 

  • Lau SK, Woo PC, Fan RY, Lee RC, Teng JL, Yuen KY (2007) Seasonal and tissue distribution of Laribacter Hong kongenisis a novel bacterium associated with gastroenteritis in retail fresh water fish in Hong Kong. Int J Food Microbiol 113(1):62–66. doi:10.1016/j.ijfoodmicro.2006.07.017

    Article  PubMed  Google Scholar 

  • Li J, Yie J, Fu W, Foo RW, Hu Y, Woo NY et al (1999) Antibiotic resistance and plasmid profiles of Vibrio isolated from cultured Sparus sarba. Wei Sheng Wu Xue Bao 39(5):461–468

    PubMed  CAS  Google Scholar 

  • Lignot JH, Cutler CP, Hazon N, Cramb G (2002) Immunolocalisation of aquaporin 3 in the gill and the gastrointestinal tract of the European eel (Anguilla anguilla L.). J Exp Biol 205:2653–2663

    PubMed  CAS  Google Scholar 

  • Lin LW, Hung SW, Lin CS, Liu CL, Chong CF (2006) Atypical manifestation of Vibrio vulnificus septicaemia. Emerg Med J 23(6):e 39

    Article  Google Scholar 

  • Loo DD, Hirayama BA, Meinild AK, Chandy G, Zeuthen T, Wright EM (1999) Passive water and ion transport by cotranspoter. J Physiol 518:195–202. doi:10.1111/j.1469-7793.1999.0195r.x

    Article  PubMed  CAS  Google Scholar 

  • Ma T, Verkman AS (1999) Aquaporin water channels in gastro-intestinal physiology. J Physiol 517:317–326. doi:10.1111/j.1469-7793.1999.0317t.x

    Article  PubMed  CAS  Google Scholar 

  • Martoja R, Martoja M (1968) Initiations aux techniques d’histologie animale. Masson, Paris

    Google Scholar 

  • Mayumi A, Toyoji K, Fumi K, Sana H, Naoaki T, Katsumi A (2003) Intestinal water absorption through aquaporin 1 expressed in the apical membrane of mucosal epithelial cells in sea water adapted Japanese eel. J Exp Biol 206:3495–3505. doi:10.1242/jeb.00579

    Article  Google Scholar 

  • Mojetta A, Ghisotto A (1995) Flore et faune de la méditerranée, guide vert. Solar, France

  • Morimatsu Y, Akiyoshi H, Aizawa H (2003) A case of septicemia type Vibrio vulnificus infection with necrotizing fasciitis rescued by lower extremity amputation. Kansenshogaku Zasshi 77(3):174–177

    PubMed  Google Scholar 

  • Nordrum S, Bakke-Mckellep AM, Krogdahl A, Buddington RK (2000) Effects of soybean and salinity on intestinal transport of nutriments in Atlantic salmon (Salmo salar L) and rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol 125(3):317–335

    CAS  Google Scholar 

  • Osman NE, Weström B, Karlsson B (1998) Serosal but not mucosal endotoxin exposure increases intestinal permeability in vitro in the rat. Scand J Gastroenterol 33:1170–1174. doi:10.1080/00365529850172520

    Article  PubMed  CAS  Google Scholar 

  • Ringø E, Lødemel JB, Myklebust R, Kaino T, Mayhew TM, Olsen RE (2001) Epithelium-associated bacteria in the gastrointestinal tract of Arctic charr (Salvelinus alpinus L). An electron microscopical study. J Appl Microbiol 90:294–300. doi:10.1046/j.1365-2672.2001.01246.x

    Article  PubMed  Google Scholar 

  • Ringø E, Olsen RE, Myklebust R, Mayhew TM (2003) Electron microscopy of the intestinal microflora of fish. Aquaculture 227:395–415. doi:10.1016/j.aquaculture.2003.05.001

    Article  Google Scholar 

  • Ringø E, Jutfelt F, Kanapathippillai P, Bakken Y, Sundell K, Glette J (2004) Damaging effect of the fish pathogen Aeromonas salmonicida ssp. samonicida on intestinal entrocytes of Atlantic Salmon (Salmo salar L.). Cell Tissue Res 318:305–311. doi:10.1007/s00441-004-0934-2

    Article  PubMed  Google Scholar 

  • Ringø E, Myklebust R, Mayhew TM, Olsen RE (2007a) Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture 268:251–264. doi:10.1016/j.aquaculture.2007.04.047

    Article  Google Scholar 

  • Ringø E, Salinas I, Olsen RE, Nyhaug A, Myklebust R, Mayhew TM (2007b) Histological changes in intestine of Atlantic salmon (Salmo salar L.) following in vitro exposure to pathogenic and probiotic bacterial strain. Cell Tissue Res 328:109–116. doi:10.1007/s00441-006-0323-0

    Article  PubMed  Google Scholar 

  • Robertson PAW, O’Dowd C, Burrells C, Williams P, Austin B (2000) Use of Carnobacterium sp. as a probiont for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture 185:235–243. doi:10.1016/S0044-8486(99)00349-X

    Article  Google Scholar 

  • Säfsten B (1993) Duodenal bicarbonate secretion and mucosal protection. Neurohumoral influence and transport mechanisms. Acta Physiol Scand Suppl 613:1–43

    PubMed  Google Scholar 

  • Scott GR, Schulte PM, Wood CM (2006) Plasticity of osmoregulatory function in the killifish intestine: drinking rates, salt and water transport, and gene expression after freshwater transfer. J Exp Biol 209(20):4040–4050. doi:10.1242/jeb.02462

    Article  PubMed  CAS  Google Scholar 

  • Shirouzu K, Miyamoto Y, Yasaka T, Matsubayashi Y, Morimatsu M (1985) Vibrio vulnificus septicemia. Acta Pathol Jpn 35(3):731–739

    PubMed  CAS  Google Scholar 

  • Skadauge E (1974) Coupling of transmural flows of NaCl and water in the intestine of eel (Anguilla anguilla). J Exp Biol 60:535

    Google Scholar 

  • Smith MW (1964) The in vitro absorption of water and solutes from the intestine of gold fish Carassius auratus. J Physiol 175:38–49

    PubMed  CAS  Google Scholar 

  • Tiruppathi C, Balasubramanian KA, Hill PG, Mathan VI (1983) Faecal free acids in tropical sprue and their possible role in the production of diarrhoea by inhibition of ATPases. Gut 24(4):300–305. doi:10.1136/gut.24.4.300

    Article  PubMed  CAS  Google Scholar 

  • Walsh PJ, Blackwelder P, Gill KA, Mommsen TP (1991) Carbonate deposits in marine fish intestines: a new source of biomineralization. Limnol Oceanogr 36(6):1227–1232

    Article  CAS  Google Scholar 

  • Wilson RW, Grosell M (2003) Intestinal bicarbonate secretion in marine teleost fish-source of bicarbonate pH sensitivity and consequence for whole animal acid-base and calcium homeostasis. Biochim Biophys Acta 1618(2):163–174. doi:10.1016/j.bbamem.2003.09.014

    Article  PubMed  CAS  Google Scholar 

  • Wilson RW, Wilson JM, Grosell M (2002) Intestinal bicarbonate secretion by marine teleost fish: why and how? Biochim Biophys Acta 1566(1–2):182–193. doi:10.1016/S0005-2736(02)00600-4

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Boukottaya Samir for his careful presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathia Khemiss.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khemiss, F., Ahmadi, S., Massoudi, R. et al. Effect of in vitro exposure to Vibrio vulnificus on hydroelectrolytic transport and structural changes of sea bream (Sparus aurata L.) intestine. Fish Physiol Biochem 35, 541–549 (2009). https://doi.org/10.1007/s10695-008-9265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-008-9265-7

Keywords

  • Electrolyte transport
  • Everted gut sac
  • Sparus aurata (L.)
  • Vibrio vulnificus
  • Water transport