Skip to main content

Sperm proteins in teleostean and chondrostean (sturgeon) fishes

Abstract

Sperm proteins in the seminal plasma and spermatozoa of teleostean and chondrostean have evolved adaptations due to the changes in the reproductive environment. Analysis of the composition and functions of these proteins provides new insights into sperm motility and fertilising abilities, thereby creating possibilities for improving artificial reproduction and germplasm resource conservation technologies (e.g. cryopreservation). Seminal plasma proteins are involved in the protection of spermatozoa during storage in the reproductive system, whereas all spermatozoa proteins contribute to the swimming and fertilising abilities of sperm. Compared to mammalian species, little data are available on fish sperm proteins and their functions. We review here the current state of the art in this field and focus on relevant subjects that require attention. Future research should concentrate on protein functions and their mode of action in fish species, especially on the role of spermatozoa surface proteins during fertilisation and on a description of sturgeon sperm proteins.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Afzelius BA (1978) Fine structure of the garfish spermatozoa. J Ultrastruct Res 64:309–314. doi:10.1016/S0022-5320(78)90039-4

    Article  CAS  PubMed  Google Scholar 

  • Alberts B, Bray D, Lewis J et al (1987) Molecular biology of the cell, vol 4. MIR publications, Moscow, pp 1–200. doi:10.1002/mmnd.4800040102

  • Babiak I, Glogowski J, Luczynski MJ et al (1997) Cryopreservation of the milt of the northern pike. J Fish Biol 46:819–828. doi:10.1111/j.1095-8649.1995.tb01604.x

    Article  Google Scholar 

  • Babiak I, Glogowski J, Goryczko K et al (2001) Effect of extender composition and equilibration time on fertilization ability and enzymatic activity of rainbow trout cryopreserved spermatozoa. Theriogenology 56:177–192. doi:10.1016/S0093-691X(01)00553-2

    Article  CAS  PubMed  Google Scholar 

  • Baccetti B, Pallini A, Burrini AG (1975) Localization and catalytic properties of lactate dehydrogenase in different sperm models. Exp Cell Res 90:183–190. doi:10.1016/0014-4827(75)90372-9

    Article  CAS  PubMed  Google Scholar 

  • Baccetti B, Burrini AG, Collodel G et al (1989) Localization of acrosomal enzymes in Arthropoda, Echinodermata, Vertebrata. J Submicrosc Cytol Pathol 21:385–389

    CAS  PubMed  Google Scholar 

  • Bannai H, Yoshimura M, Takahashi K et al (2000) Calcium regulation of microtubule sliding in reactivated sea urchin sperm flagella. J Cell Sci 113:831–839

    CAS  PubMed  Google Scholar 

  • Billard R, Takashima F (1983) Resorption of spermatozoa in the sperm duct of rainbow trout during the post-spawning period. Bull Jpn Soc Sci Fish 49:387–392

    Google Scholar 

  • Billard R, Cosson MP (1992) Some problems related to the assessment of sperm motility in freshwater fish. J Exp Zool 261:122–131. doi:10.1002/jez.1402610203

    Article  Google Scholar 

  • Billard R, Cosson J, Crim LW (1993) Motility of fresh and aged halibut sperm. Aquat Living Resour 6:67–75. doi:10.1051/alr:1993008

    Article  Google Scholar 

  • Billard R, Cosson J, Crim LW et al (1995) Sperm physiology and quality. In: Bromage NR, Roberts RJ (eds) Brood stock management and egg and larval quality. Blackwell Science, Oxford, pp 25–52

    Google Scholar 

  • Billard R, Linhart O, Fierville F et al (1997) Motility of Silurus glanis spermatozoa in the testicles and in the milt. Pol Arch Hydrobiol 44:115–122

    Google Scholar 

  • Boitano S, Omoto CK (1991) Membrane hyperpolarization activates trout sperm without an increase in intracellular pH. J Cell Sci 98:343–349

    PubMed  Google Scholar 

  • Boitano S, Omoto CK (1992) Trout sperm swimming patterns and role of intracellular Ca2+. Cell Motil Cytoskeleton 21:74–82. doi:10.1002/cm.970210109

    Article  Google Scholar 

  • Brandon CI, Heusner GL, Caudle AB et al (1999) Two-dimensional polyacrylamide gel electrophoresis of equine seminal plasma proteins and their correlation with fertility. Theriogenology 52:863–873. doi:10.1016/S0093-691X(99)00178-8

    Article  CAS  PubMed  Google Scholar 

  • Breton B, Menezo Y, Billard R et al (1974) Mise en évidence de quelques enzymes dans le sperme de la carpe Cyprinus carpio L et de la truite Salmo gairdneri Richardson et dans le liquide coelomatique de la truite. C R Acad Sci Paris D 278:1285–1288

    CAS  Google Scholar 

  • Brokaw CJ (1979) Calcium-induced asymmetrical beating of triton-demembranated sea urchin sperm flagella. J Cell Biol 82:401–411. doi:10.1083/jcb.82.2.401

    Article  CAS  PubMed  Google Scholar 

  • Burness G, Moyes CD, Montgomerie R (2005) Motility, ATP levels and metabolic enzyme activity of sperm from bluegill (Lepomis macrochirus). Comp Biochem Physiol Mol Integr Physiol 140:11–17

    Google Scholar 

  • Cabrita E, Anel L, Herraéz MP (2001) Effect of external cryoprotectants as membrane stabilizers on cryopreserved rainbow trout sperm. Theriogenology 56:623–635. doi:10.1016/S0093-691X(01)00594-5

    Article  CAS  PubMed  Google Scholar 

  • Cadel S, Pierotti AR, Foulon T et al (1995) Aminopeptidase-B in the rat testes: isolation, functional properties and cellular localization in the seminiferous tubules. Mol Cell Endocrinol 110:149–160. doi:10.1016/0303-7207(95)03529-G

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ, Sanz L, Topfer-Petersen E (1992) Carbohydrate-binding proteins involved in gamete interaction in the pig. In: Nieschlag E, Habenicht UF (eds) Spermatogenesis–fertilization–contraception. Springer, Berlin, pp 395–417

    Google Scholar 

  • Cao WL, Wang YX, Xiang ZQ et al (2003) Cryopreservation-induced decrease in heat-shock protein 90 in human spermatozoa and its mechanism. Asian J Androl 5:43–46

    CAS  PubMed  Google Scholar 

  • Chan PJ, Corselli JU, Patton WC et al (1997) The mechanism of heat-induced hyperactivation of human sperm and the relationship to pregnancy. Fertil Steril 68[Suppl 1]:S61–S62. doi:10.1016/S0015-0282(97)90755-X

    Article  Google Scholar 

  • Chauvaud L, Cosson J, Suquet M et al (1995) Sperm motility in turbot, Scophthalmus maximus: initiation of movement and changes with time of spawning characteristics. Environ Biol Fishes 43:341–349. doi:10.1007/BF00001167

    Article  Google Scholar 

  • Cherr GN, Clark WH (1982) Fine-structure of the envelope and micropyles in the eggs of the white sturgeon, Acipenser transmontanus Richardson. Dev Growth Differ 24:341–352. doi:10.1111/j.1440-169X.1982.00341.x

    Article  Google Scholar 

  • Cherr GN, Clark WN (1985) Gamete interaction in the white sturgeon Acipenser transmontanus: a morphological and physiological review. Environ Biol Fishes 14:11–22. doi:10.1007/BF00001572

    Article  Google Scholar 

  • Cherr GN, Clark WN (1986) Induction of the acrosomal reaction in sperm from the white sturgeon, Acipenser transmontanus. In: Hedrick JL (ed) Advances in experimental medicine and biology the molecular and cellular biology of fertilization. Plenum Press, New York, pp 235–249

    Google Scholar 

  • Christen R, Gatti JL, Billard R (1987) Trout sperm motility. The transient movement of trout sperm motility is related to changes in concentrations of ATP following the activation of flagellar movement. Eur J Biochem 166:667–671. doi:10.1111/j.1432-1033.1987.tb13565.x

    Article  CAS  PubMed  Google Scholar 

  • Cierezko A (2008) Chemical composition of seminal plasma and its physiological relationship with sperm motility, fertilizing capacity and cryopreservation success in fish. In: Alavi SMH, Cosson JJ, Coward K, Rafiee G (eds) Fish spermatology. Alpha Science Int, Oxford, pp 215–240

    Google Scholar 

  • Ciereszko A, Dabrowski K (1994) Relationship between biochemical constituents of fish semen and fertility: the effect of short-term storage. Fish Physiol Biochem 12:357–369. doi:10.1007/BF00004300

    Article  CAS  Google Scholar 

  • Cosson J (1992) The covalent oscillator—a paradigm accounting for the sliding bending mechanism and wave-propagation in cilia and flagella. Biocell 76:319–327

    CAS  Google Scholar 

  • Cosson J (2008) The motility apparatus of fish spermatozoa. In: Alavi SMH, Cosson JJ, Coward K, Rafiee G (eds) Fish spermatology. Alpha Science Int, Oxford, pp 281–316

    Google Scholar 

  • Cosson M-P, Gagnon C (1988) Protease inhibitor and substrates block motility and microtubule sliding of sea urchin and carp spermatozoa. Cell Motil Cytoskeleton 10:518–527. doi:10.1002/cm.970100408

    Article  CAS  Google Scholar 

  • Cosson M-P, Carré D, Cosson J (1984) Sperm chemotaxis in siphonophores II. Calcium-dependent asymmetrical movement of spermatozoa induced by attractant. J Cell Sci 68:163–181

    CAS  PubMed  Google Scholar 

  • Cosson M-P, Cosson J, André F, Billard R (1995) CAMP/ATP relationship in the activation of trout sperm motility: their interaction in membrane-deprived models and in live spermatozoa. Cell Motil Physiol 143:546–554

    Google Scholar 

  • Cosson J, Dreanno C, Billard R et al (1999) Regulation of axonemal wave parameters of fish spermatozoa by ionic factors. In: Gagnon C (ed) The male gamete: from basic knowledge to clinical applications. Cache River Press, Montreal, pp 161–186

    Google Scholar 

  • Cosson J, Linhart O, Mims SD et al (2000) Analysis of motility parameters from paddlefish and shovelnose sturgeon spermatozoa. J Fish Biol 56:1348–1367. doi:10.1111/j.1095-8649.2000.tb02148.x

    Article  Google Scholar 

  • Cosson J, Groison AL, Suquet M et al (2008) Studying sperm motility in marine fish: an overview on the state of the art. J Appl Ichtyol 24:460–486. doi:10.1111/j.1439-0426.2008.01151.x

    Article  Google Scholar 

  • Costa M, Canale D, Filicori M et al (1994) l-carnitine in idiopathic asthenozoospermia: a multicenter study Italian study group on carnitine and male infertility. Andrologia 26:155–159

    CAS  PubMed  Google Scholar 

  • Coward K, Campos-Mendoza A, Larman M et al (2003) Teleost fish spermatozoa contain a cytosolic protein factor that induces calcium release in sea urchin egg homogenates and triggers calcium oscillations when injected into mouse oocytes. Biochem Biophys Res Commun 305:299–304. doi:10.1016/S0006-291X(03)00753-8

    Article  CAS  PubMed  Google Scholar 

  • Dan JC (1950) Fertilization in the medusan, Spirocodon saltatrix. Biol Bull 99:412–415. doi:10.2307/1538471

    Article  CAS  PubMed  Google Scholar 

  • Darszon A, Beltrán C, Felix R et al (2001) Ion transport in sperm signaling. Dev Biol 240:1–14. doi:10.1006/dbio.2001.0387

    Article  CAS  PubMed  Google Scholar 

  • Davis NS, DiSant’Agnese PA, Ewing JF, Mooney RA et al (1989) The neuroendocrine prostate: characterization and quantitation of calcitonin in the human gland. J Urol 142:884–888

    CAS  PubMed  Google Scholar 

  • De Leeuw FE, De Leeuw AM, Den Daas JHG et al (1993) Effect of various cryoprotectants agents and membrane-stabilizing compounds on bull sperm membrane integrity after cooling and freezing. Cryobiology 30:32–44. doi:10.1006/cryo.1993.1005

    Article  PubMed  Google Scholar 

  • Desrosiers P, Légaré C, Leclerc P et al (2006) Membranous and structural damage that occur during cryopreservation of human sperm may be time-related events. Fertil Steril 85:1744–1752. doi:10.1016/j.fertnstert.2005.11.046

    Article  CAS  PubMed  Google Scholar 

  • Detweiler C, Thomas P (1998) Role of ions and ion channels in the regulation of Atlantic croaker sperm motility. J Exp Zool 281:139–148. doi:10.1002/(SICI)1097-010X(19980601)281:2<139::AID-JEZ8>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  • DiLauro MN, Kaboord WS, Walsh RA (2000) Sperm-cell ultrastructure of North American sturgeon I. The Atlantic sturgeon (Acipenser oxyrhynchus). Can J Zool 78:438–447. doi:10.1139/cjz-78-3-438

    Article  Google Scholar 

  • Dréanno C, Cosson J, Suquet M et al (1999) Effects of osmolality, morphology perturbations and intracellular nucleotide content during the movement of sea bass (Dicentrarchus labrax) spermatozoa. J Reprod Fertil 116:113–125. doi:10.1530/jrf.0.1160113

    PubMed  Google Scholar 

  • Evans JP, Kopf GS (1998) Molecular mechanisms of sperm–egg interactions and egg activation. Andrologia 30:297–307

    CAS  PubMed  Google Scholar 

  • Farrant J (1977) Water transport and cell survival in cryobiological procedures. Philos Trans R Soc Lond Biol Sci 278:191–205. doi:10.1098/rstb.1977.0037

    Article  CAS  Google Scholar 

  • Gadea J, Selles E, Marco MA et al (2004) Decrease in glutathione content in boar sperm after cryopreservation—effect of the addition of reduced glutathione to the freezing and thawing extenders. Theriogenology 62:690–701. doi:10.1016/j.theriogenology.2003.11.013

    Article  CAS  PubMed  Google Scholar 

  • Gardner AJ, Evans JP (2006) Mammalian membrane block to polyspermy: new insights into how mammalian eggs prevent fertilization by multiple sperm. Reprod Fertil Dev 18:53–61. doi:10.1071/RD05122

    Article  CAS  PubMed  Google Scholar 

  • Gatti JL, Billard R, Christen R (1990) Ionic regulation of the plasma membrane potential of rainbow trout, Salmo gairdneril, spermatozoa: role in the initiation of sperm motility. J Cell Physiol 143:546–554. doi:10.1002/jcp.1041430320

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Thomas P (1995) Binding characteristics of 20β-S to Atlantic croaker sperm membrane receptor. In: Proc 5th Int Symp Reprod Physiol Fish. University of Texas, Austin, pp 239–245

  • Gibbons BH, Baccetti B, Gibbons IR (1985) Motility of the 9 + 2 flagellum of Anguilla sperm. Cell Motil 5:333–350. doi:10.1002/cm.970050406

    Article  CAS  PubMed  Google Scholar 

  • Gilkey JC (1981) Mechanisms of fertilization in fishes. Am Zool 21:359–375

    Google Scholar 

  • Ginzburg AS (1972) Fertilization in fishes and the problem of polyspermy. Keter Press, Jerusalem

    Google Scholar 

  • Glogowski J, Babiak I, Goryczko K et al (1996) Activity of aspartate aminotransferase and acid phosphatase in cryopreserved trout sperm. Reprod Fertil Dev 8:1179–1184. doi:10.1071/RD9961179

    Article  CAS  PubMed  Google Scholar 

  • Gronczewska J, Zietara MS, Biegniewska A et al (2003) Enzyme activities in fish spermatozoa with focus on lactate dehydrogenase isoenzymes from herring Clupea harengus. Comp Biochem Physiol B 134:399–406. doi:10.1016/S1096-4959(02)00192-6

    Article  PubMed  CAS  Google Scholar 

  • Grzyb K, Rychowski M, Biegniewska A et al (2003) Quantitative determination of creatine kinase release from herring (Clupea harengus) spermatozoa induced by tributyltin. Comp Biochem Physiol C 134:207–213

    Google Scholar 

  • Hayashi H, Yamamoto K, Richmond J et al (1987) Involvement of tyrosine protein kinase in the initiation of flagellar movement in rainbow trout spermatozoa. J Biol Chem 262:16692–16698

    CAS  PubMed  Google Scholar 

  • Huang CJ, Chen CC, Chen HJ et al (1995a) A protease inhibitor of the serpin family is a major protein in carp perimeningeal fluid: I Protein purification and characterization. J Neurochem 64:1715–1720

    CAS  PubMed  Google Scholar 

  • Huang CJ, Lee MS, Huang FL et al (1995b) A protease inhibitor of the serpin family is a major protein in carp perimeningeal fluid: II. cDNA cloning, sequence analysis, and Escherichia coli expression. J Neurochem 64:1721–1727

    CAS  PubMed  Google Scholar 

  • Huang SY, Kuo YH, Lee WC et al (1999) Substantial decrease of heat-shock protein precedes the decline of sperm motility during cooling of boar spermatozoa. Theriogenology 51:1007–1016. doi:10.1016/S0093-691X(99)00046-1

    Article  CAS  PubMed  Google Scholar 

  • Inaba K (2003) Molecular architecture of sperm flagella: molecules for motility and signaling. Zool Sci 20:1043–1056. doi:10.2108/zsj.20.1043

    Article  CAS  PubMed  Google Scholar 

  • Inaba K (2008) Molecular mechanisms of the activation of flagellar motility in sperm. In: Alavi SMH, Cosson JJ, Coward K, Rafiee G (eds) Fish spermatology. Alpha Science Int, Oxford, pp 267–280

    Google Scholar 

  • Inaba K, Morisawa M (1991) A chymotrypsin-like proteinase involved in motility of sperm in salmonid fish. Biomed Res 12:435–437

    CAS  Google Scholar 

  • Inaba K, Kagami O, Ogawa K (1999) Tctex2-related outer arm dynein light chain is phosphorylated at activation of sperm motility. Biochem Biophys Res Commun 256:177–183. doi:10.1006/bbrc.1999.0309

    Article  CAS  PubMed  Google Scholar 

  • Inaba K, Padma P, Hozumi A (2002) Isolation of an inner arm dynein intermediate chain IC116 from Ciona intestinalis and its roles in flagellar motility. Zool Sci 19:1435

    Google Scholar 

  • Inaba K, Dreano C, Cosson J (2003) Control of Flatfish sperm motility by CO2 and carbonic anhydrase. Cell Motil Cytoskeleton 55:174–187. doi:10.1002/cm.10119

    Article  CAS  PubMed  Google Scholar 

  • Itoh A, Inaba K, Ohtake H et al (2003) Characterization of cAMP-dependent protein kinase catalytic subunit from rainbow trout sperm. Biochem Biophys Res Commun 305:855–861. doi:10.1016/S0006-291X(03)00840-4

    Article  CAS  PubMed  Google Scholar 

  • Jaffe LA (1990) First messengers at fertilization. J Reprod Fertil Suppl 42:107–116

    CAS  PubMed  Google Scholar 

  • Jamieson BGM (1991) Fish evolution and systematics: evidence from spermatozoa. Cambridge University Press, Cambridge

    Google Scholar 

  • Jobim MIM, Oberst ER, Salbego CG et al (2004) Two-dimensional polyacrylamide gel electrophoresis of bovine seminal plasma proteins and their relation with semen freezability. Theriogenology 61:255–266. doi:10.1016/S0093-691X(03)00230-9

    Article  CAS  PubMed  Google Scholar 

  • Jones R (1990) Identification and functions of mammalian egg recognition molecules during fertilization. J Reprod Fertil Suppl 42:89–105

    CAS  PubMed  Google Scholar 

  • Kamiya R (2002) Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. Int Rev Cytol 219:115–155. doi:10.1016/S0074-7696(02)19012-7

    Article  CAS  PubMed  Google Scholar 

  • Kawabata C, Ichishima E (1997) Miltpain, new cysteine proteinase from the milt of chum salmon, (Oncorhynchus keta). Comp Biochem Physiol B 117:445–452. doi:10.1016/S0305-0491(97)00142-9

    Article  CAS  PubMed  Google Scholar 

  • Kopeika EF, Zhang T, Rawson DM et al (2005) Effect of cryopreservation on mitochondrial DNA of zebrafish (Danio rerio) blastomere cells. Mutat Res 570:49–61. doi:10.1016/j.mrfmmm.2004.09.007

    CAS  PubMed  Google Scholar 

  • Kowalski R, Glogowski J, Kucharczyk D et al (2003) Proteolytic activity and electrophoretic profiles of proteases from seminal plasma of teleosts. J Fish Biol 63:1008–1019. doi:10.1046/j.1095-8649.2003.00224.x

    Article  CAS  Google Scholar 

  • Krasznai Z, Marian T, Izumi H et al (2000) Membrane hyperpolarization removes inactivation of Ca2+ channels, leading to Ca2+ influx and subsequent initiation of sperm motility in the common carp. Proc Natl Acad Sci USA 97:2052–2057. doi:10.1073/pnas.040558097

    Article  CAS  PubMed  Google Scholar 

  • Kudo S (1983) Response to sperm penetration of the cortex of eggs of the fish, Plecoglossus altivelis. Dev Growth Differ 25:163–170. doi:10.1111/j.1440-169X.1983.00163.x

    Article  Google Scholar 

  • Kudo S (1998) Role of sperm head syndecan at fertilization in fish. J Exp Zool 281:620–625. doi:10.1002/(SICI)1097-010X(19980815)281:6<620::AID-JEZ10>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  • Kumaresan A, Ansari MR, Garg A et al (2006) Effect of oviductal proteins on sperm functions and lipid peroxidation levels during cryopreservation in buffaloes. Anim Reprod Sci 93:246–257. doi:10.1016/j.anireprosci.2005.06.030

    Article  CAS  PubMed  Google Scholar 

  • Labbé C, Loir M (1991) Plasma membrane of trout spermatozoa: I Isolation and partial characterization. Fish Physiol Biochem 9:325–338. doi:10.1007/BF02265153

    Article  Google Scholar 

  • Lahnsteiner F (2000) Cryopreservation protocols for sperm of salmonid fishes. In: Tiersch TR, Mazik PM (eds) Cryopreservation in aquatic species. World Aquaculture Society, Baton Rouge, pp 91–100

    Google Scholar 

  • Lahnsteiner F (2003) Morphology, fine structure, biochemistry, and function of the spermatic ducts in marine fish. Tissue Cell 35:363–373. doi:10.1016/S0040-8166(03)00057-0

    Article  CAS  PubMed  Google Scholar 

  • Lahnsteiner F (2007) Characterization of seminal plasma proteins stabilizing the sperm viability in rainbow trout (Oncorhynchus mykiss). Anim Reprod Sci 97:151–164. doi:10.1016/j.anireprosci.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  • Lahnsteiner F, Patzner RA, Weismann T (1992) Monosaccharides as energy resources during motility of spermatozoa in Leuciscus cephalus (Cyprinidae, Teleostei). Fish Physiol Biochem 10:283–289. doi:10.1007/BF00004477

    Article  CAS  Google Scholar 

  • Lahnsteiner F, Patzner RA, Weismann T (1993) Energy resources of spermatozoa of the rainbow trout (Oncorhynchus mykiss) (Pisces, Teleostei). Reprod Nutr Dev 33:349–360. doi:10.1051/rnd:19930404

    Article  CAS  PubMed  Google Scholar 

  • Lahnsteiner F, Patzner RA, Weismann T (1994) Testicular main ducts and spermatic ducts in some cyprinid fishes I. Morphology, fine structure and histochemistry. J Fish Biol 44:937–951. doi:10.1111/j.1095-8649.1994.tb01266.x

    Article  Google Scholar 

  • Lahnsteiner F, Berger B, Weismann T et al (1998) Determination of semen quality of the rainbow trout by sperm motility, seminal plasma parameters and spermatozoal metabolism. Aquaculture 163:163–181. doi:10.1016/S0044-8486(98)00243-9

    Article  CAS  Google Scholar 

  • Lahnsteiner F, Berger B, Weismann T (1999) Sperm metabolism of the teleost fishes Chalcalburnus chalcoides and Oncorhynchus mykiss and its relation to motility and viability. J Exp Zool 284:454–465. doi:10.1002/(SICI)1097-010X(19990901)284:4<454::AID-JEZ12>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  • Lahnsteiner F, Berger B, Horvath A et al (2004) Studies on the semen biology and sperm cryopreservation in the sterlet, Acipenser ruthenus L. Aquacult Res 35:519–528. doi:10.1111/j.1365-2109.2004.01034.x

    Article  Google Scholar 

  • Lessard C, Parent S, Leclerc P et al (2000) Cryopreservation alters the levels of the bull sperm surface protein P25b. J Androl 21:700–707

    CAS  PubMed  Google Scholar 

  • Li P, Wei QW, Liu L (2008) DNA integrity of Polyodon spathula cryopreserved sperm. J Appl Ichthyol 24:121–125. doi:10.1111/j.1439-0426.2007.01025.x

    Article  CAS  Google Scholar 

  • Linhart O, Walford J, Sivaloganathan B et al (1999) Effects of osmolality and ions on the motility of stripped and testicular of freshwater- and seawater-acclimated tilapia, Oreochromis mossambicus. J Fish Biol 55:1344–1358

    Google Scholar 

  • Loir M, Labbé C, Maisse G et al (1990) Proteins of seminal fluid and spermatozoa in the trout (Oncorhynchus mykiss): partial characterization and variations. Fish Physiol Biochem 8:485–495. doi:10.1007/BF00003405

    Article  CAS  Google Scholar 

  • Mak M, Mak P, Olczak M et al (2004) Isolation, characterization, and cDNA sequencing of alpha-1-antiproteinase-like protein from rainbow trout seminal plasma. Biochim Biophys Acta 1671:93–105

    CAS  PubMed  Google Scholar 

  • Mansour N, Lahnsteiner F, Berger B (2003) Metabolism of intratesticular spermatozoa of a tropical teleost fish (Clarias gariepinus). Comp Biochem Physiol B 135:285–296. doi:10.1016/S1096-4959(03)00083-6

    Article  PubMed  CAS  Google Scholar 

  • Meryman HT, Williams RJ, Douglas MS (1977) Freezing injury from “solution effects” and its prevention by natural or artificial cryoprotection. Cryobiology 14:287–302

    Article  CAS  PubMed  Google Scholar 

  • Miller RL (1985) Sperm chemo-orientation in metazoa. In: Metz CB, Monroy A (eds) Biology of fertilization. Academic Press, New York

    Google Scholar 

  • Mitchell DR (2000) Chlamydomaona flagella. J Physiol 36:261–273

    CAS  Google Scholar 

  • Mochida K, Kondo T, Matsubara T et al (1999) A high molecular weight glycoprotein in seminal plasma is a sperm immobilizing factor in the teleost Nile tilapia, Oreochromis niloticus. Dev Growth Differ 41:619–627. doi:10.1046/j.1440-169x.1999.00463.x

    Article  CAS  PubMed  Google Scholar 

  • Mochida K, Matsubara T, Kudo H et al (2002) A novel seminal plasma glycoprotein of a teleost, the Nile tilapia (Oreochromis niloticus), contains a partial von Willebrand factor type D domain and a zona pellucida-like domain. Mol Reprod Dev 62:57–68. doi:10.1002/mrd.10071

    Article  CAS  PubMed  Google Scholar 

  • Morisawa M (1994) Cell signaling mechanisms for sperm motility. Zool Sci 11:647–662

    CAS  PubMed  Google Scholar 

  • Morisawa M, Ishida K (1987) Short-term changes in levels of cyclic AMP, adenylate cyclase, and phosphodiesterase during the initiation of sperm motility in rainbow trout. J Exp Zool 242:199–204. doi:10.1002/jez.1402420211

    Article  CAS  PubMed  Google Scholar 

  • Morisawa M, Morisawa S (1990) Acquisition and initiation of sperm motility. In: Gagnon C (ed) Controls of sperm motility: biological and clinical aspects. CRC Press, Boca Raton, pp 137–151

    Google Scholar 

  • Morita M, Takemura A, Nakajima A et al (2006) Microtubule sliding movement in Tilapia sperm flagella axoneme is regulated by Ca2+/Calmodulin-dependent protein phosphorylation. Cell Motil Cytoskeleton 63:459–470. doi:10.1002/cm.20137

    Article  CAS  PubMed  Google Scholar 

  • Morris GJ, Watson PF (1984) Cold shock injury—a comprehensive bibliography. Cryo Lett 5:352–372

    Google Scholar 

  • Müller P, Erlemann KR, Müller K et al (1998) Biophysical characterization of the interaction of bovine seminal plasma protein PDC-109 with phospholipid vesicles. Eur Biophys J 27:33–41. doi:10.1007/s002490050108

    Article  PubMed  Google Scholar 

  • Mungan NA, Mungan G, Basar MM et al (2001) Effect of seminal plasma calcitonin levels on sperm motility. Arch Androl 47:113–117. doi:10.1080/014850101316901316

    Article  CAS  PubMed  Google Scholar 

  • Nayernia K, Diaconu M, Aumüller G et al (2004) Phospholipid hydroperoxide glutathione peroxidase: expression pattern during testicular development in mouse and evolutionary conservation in spermatozoa. Mol Reprod Dev 67:458–464. doi:10.1002/mrd.20039

    Article  CAS  PubMed  Google Scholar 

  • Oda S, Igarashi Y, Manaka et al (1998) Sperm-activating proteins obtained from the herring eggs are homologous to trypsin inhibitors and synthesized in follicle cells. Dev Biol 204:55–63. doi:10.1006/dbio.1998.9056

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa K, Inaba K, Morisawa M (1997) Purification and characterization of 26S proteasomes from sperm flagella of chum salmon and its roles in the regulation of sperm motility. Biomed Res 18:353–363

    CAS  Google Scholar 

  • Osaki A, Okida N, Ishikawa K et al (1999) Identification of ubiquitin in seminal plasma from tilapia, Oreochromis niloticus. Biomed Res 20:249–252

    CAS  Google Scholar 

  • Paju A, Bjartell A, Zhang WM et al (2000) Expression and characterization of trypsinogen produced in the human male genital tract. Am J Pathol 157:2011–2021

    CAS  PubMed  Google Scholar 

  • Pearse AS (1950) The emigrations of animals from the sea. Sherwood, New York

    Google Scholar 

  • Pietrobon EO, Dominguez LA, Vincenti AE et al (2001) Detection of the mouse acrosome reaction by acid phosphatase Comparison with chlortetracycline and electron microscopy. J Androl 22:96–103

    CAS  PubMed  Google Scholar 

  • Piros B, Glogowski J, Kolman R et al (2002) Biochemical characterization of Siberian sturgeon Acipenser baeri and sterlet, Acipenser ruthenus, milt plasma and spermatozoa. Fish Physiol Biochem 26:289–295. doi:10.1023/A:1026280218957

    Article  CAS  Google Scholar 

  • Potempa J, Korzus E, Travis J (1994) The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem 269:15957–15960

    CAS  PubMed  Google Scholar 

  • Psenicka M, Alavi SMH, Rodina M et al (2007) Morphology and ultrastructure of Siberian sturgeon, Acipenser baerii, spermatozoa using scanning and transmission electron microscopy. Biocell 99:103–115

    Google Scholar 

  • Punnett T, Miller RL, Yoo BH (1992) Partial purification and some chemical properties of the sperm chemoattractant from the forcipulate starfish Pycnopodia helianthoides (Brandt, 1835). J Exp Zool 262:87–96. doi:10.1002/jez.1402620112

    Article  CAS  Google Scholar 

  • Raijmakers MTM, Roelofs HMJ, Steegers EAP et al (2003) Glutathione and gluthatione S-transferases A1-1 and P1-1 in seminal plasma may play a role in protecting against oxidative damage to spermatozoa. Fertil Steril 79:169–172. doi:10.1016/S0015-0282(02)04404-7

    Article  PubMed  Google Scholar 

  • Salzberger Z, Lewin LM, Shalgi R (1992) Loss of acid phosphatase from rat spermatozoa as a method for assessing the acrosome reaction. Andrologia 24:155–159

    Article  CAS  PubMed  Google Scholar 

  • Sarosiek B, Ciereszko A, Kolman R et al (2004) Characteristics of arylsulfatase present in Russian sturgeon (Acipenser gueldenstaedti Brandt) semen. Comp Biochem Physiol B 139:571–579. doi:10.1016/j.cbpc.2004.03.016

    Article  PubMed  CAS  Google Scholar 

  • Sarosiek B, Wysocka J, Wysocki P et al (2006) Characteristics of acid phosphatase from Russian sturgeon (Acipenser gueldenstaedii) spermatozoa. J Appl Ichthyol 22[Suppl 1]:375–379. doi:10.1111/j.1439-0426.2007.00989.x

    Article  Google Scholar 

  • Satorre MM, Breininger E, Beconi MT et al (2007) α-Tocopherol modifies tyrosine phosphorylation and capacitation-like state of cryopreserved porcine sperm. Theriogenology 68:958–965. doi:10.1016/j.theriogenology.2007.06.021

    Article  CAS  PubMed  Google Scholar 

  • Saudrais C, Fierville F, Loir M et al (1998) The use of phosphocreatine plus ADP as energy source for motility of membrane-deprived trout spermatozoa. Cell Motil Cytoskeleton 41:91–106 doi:10.1002/(SICI)1097-0169(1998)41:2<91::AID-CM1>3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  • Schiller J, Arnhold J, Glander HJ et al (2000) Lipid analysis of human spermatozoa and seminal plasma by MALDI-TOF mass spectrometry and NMR spectroscopy-effects of freezing and thawing. Chem Phys Lipids 106:145–156. doi:10.1016/S0009-3084(00)00148-1

    Article  CAS  PubMed  Google Scholar 

  • Schöneck C, Braun J, Einspanier R (1996) Sperm viability is influenced in vitro by the bovine seminal protein a SFP: effects on motility, mitochondrial activity and lipid peroxidation. Theriogenology 45:633–642. doi:10.1016/0093-691X(95)00409-2

    Article  PubMed  Google Scholar 

  • Schuffner A, Morshedi M, Oehninger S (2001) Cryopreservation of fractionated, highly motile human spermatozoa: effect on membrane phosphatidylserine externalization and lipid peroxidation. Hum Reprod 16:2148–2153. doi:10.1093/humrep/16.10.2148

    Article  CAS  PubMed  Google Scholar 

  • Smith EF (2002) Regulation of flagellar dynein by calcium and a role for an axonemal calmodulin and calmodulin-dependent kinase. Mol Biol Cell 13:3303–3313. doi:10.1091/mbc.E02-04-0185

    Article  CAS  PubMed  Google Scholar 

  • Suquet M, Dreanno C, Petton B et al (1998) Long-term effects of the cryopreservation of turbot (Psetta maxima) spermatozoa. Aquat Living Resour 11:45–48. doi:10.1016/S0990-7440(99)80030-8

    Article  Google Scholar 

  • Suquet M, Dreanno C, Fauvel C et al (2000) Cryopreservation of sperm in marine fish. Aquacult Res 31:231–243. doi:10.1046/j.1365-2109.2000.00445.x

    Article  Google Scholar 

  • Swann K, Parrington J (1999) Mechanism of Ca2+ release at fertilization in mammals. J Exp Zool 285:267–275. doi:10.1002/(SICI)1097-010X(19991015)285:3<267::AID-JEZ10>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  • Takai H, Morisawa M (1995) Change in intracellular K+ concentration caused by external osmolality change regulates sperm motility of marine and freshwater teleosts. J Cell Biol 126:737–745

    Google Scholar 

  • Tanimoto S, Kudo R, Nagazawa T et al (1994) Implication that potassium flux and increase in intracellular calcium are necessary for the initiation of sperm motility in salmonid fishes. Mol Reprod Dev 39:409–414. doi:10.1002/mrd.1080390409

    Article  CAS  PubMed  Google Scholar 

  • Terner C, Korsh G (1963) The oxidative metabolism of pyruvate, acetate and glucose in isolated fish spermatozoa. J Cell Comp Physiol 62:243–249. doi:10.1002/jcp.1030620303

    Article  CAS  Google Scholar 

  • Tibbs J (1959) The adenosine triphosphatase activity of perch sperm flagella. Biochim Biophys Acta 33:220. doi:10.1016/0006-3002(59)90517-7

    Article  CAS  PubMed  Google Scholar 

  • Thomas P, Breckenridge-Miller D, Detweiler C (1997) Binding characteristics and regulation of the 17, 20ß, 21-trihydroxy–4-pregnen-3-one (20β-S) receptor on testicular and sperm plasma membranes of spotted seatrout (Cynoscion nebulosus). Fish Physiol Biochem 17:109–116. doi:10.1023/A:1007781128677

    Article  CAS  Google Scholar 

  • Tombes RM, Shapiro BM (1989) Energy transport and cell polarity: relationship of phosphagen kinase activity to sperm function. J Exp Zool 251:82–90. doi:10.1002/jez.1402510110

    Article  CAS  PubMed  Google Scholar 

  • Tulsiani DRP, Yoshida-Komiya H, Araki Y (1997) Mammalian fertilization: a carbohydrate-mediated event. Biol Reprod 57:487–494. doi:10.1095/biolreprod57.3.487

    Article  CAS  PubMed  Google Scholar 

  • Urner F, Sakkas D (2003) Protein phosphorylation in mammalian spermatozoa. Reproduction 125:17–26. doi:10.1530/rep.0.1250017

    Article  CAS  PubMed  Google Scholar 

  • Vines CA, Yoshida M, Griffin FJ et al (2002) Motility initiation in herring sperm is regulated by reverse sodium-calcium exchange. Proc Natl Acad Sci USA 99:2026–2031. doi:10.1073/pnas.042700899

    Article  CAS  PubMed  Google Scholar 

  • Visconti PE, Bailey JL, Moore GD et al (1995a) Capacitation of mouse spermatozoa. 1. Correlation between the capacitation state and protein–tyrosine phosphorylation. Development 121:1129–1137

    CAS  PubMed  Google Scholar 

  • Visconti PE, Moore GD, Baley JL et al (1995b) Capacitation of mouse spermatozoa. 2. Protein–tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121:1139–1150

    CAS  PubMed  Google Scholar 

  • Vitali G, Parente R, Melotti C (1995) Carnitine supplementation in human idiopathic asthenospermia: clinical results. Drugs Exp Clin Res 21:157–159

    CAS  PubMed  Google Scholar 

  • Ward GE, Brokaw CJ, Garbers DL et al (1985) Chemotaxis of Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer. J Cell Biol 101:2324–2329. doi:10.1083/jcb.101.6.2324

    Article  CAS  PubMed  Google Scholar 

  • Wennemuth ED, Meinhardt A, Mallidis C et al (2001) Assessment of fibronectin as a potential new clinical tool in andrology. Andrologia 33:43–46. doi:10.1046/j.1439-0272.2001.00370.x

    Article  CAS  PubMed  Google Scholar 

  • Wojtczak M, Dietrich GJ, Ciereszko A (2005) Transferrin and antiproteases are major proteins of common carp seminal plasma. Fish Shellfish Immunol 19:387–391. doi:10.1016/j.fsi.2005.01.009

    Article  CAS  PubMed  Google Scholar 

  • Wojtczak M, Calka J, Glogowski J et al (2007) Isolation and characterization of α1-proteinase inhibitor from common carp (Cyprinus carpio) seminal plasma. Comp Biochem Physiol B 148:264–276. doi:10.1016/j.cbpb.2007.06.004

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto TO (1961) Physiology of fertilization in fish eggs. Int Rev Cytol 12:361–405. doi:10.1016/S0074-7696(08)60545-8

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Inaba K, Ohtake H et al (1999) Purification and characterization of prolyl endopeptidase from the Pacific herring, Clupea pallasi, and its role in the activation of sperm motility. Dev Growth Differ 41:217–225. doi:10.1046/j.1440-169x.1999.00424.x

    Article  CAS  PubMed  Google Scholar 

  • Yousef GM, Diamandis M, Jung K et al (2001) Molecular cloning of a novel human acid phosphatase gene (ACPT) that is highly expressed in the testis. Genomics 74:385–395. doi:10.1006/geno.2001.6556

    Article  CAS  PubMed  Google Scholar 

  • Zilli L, Schiavone R, Zonno V et al (2004) Adenosine triphosphate concentration and β-d-glucuronidase activity as indicators of sea bass semen quality. Biol Reprod 70:1679–1684. doi:10.1095/biolreprod.103.027177

    Article  CAS  PubMed  Google Scholar 

  • Zilli L, Schiavone R, Zonno V et al (2005) Effect of cryopreservation on sea bass sperm proteins. Biol Reprod 72:1262–1267. doi:10.1095/biolreprod.104.036202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by USB RIFCH No: MSM 6007665809 and the Granting Agency of the Czech Academy of Science No: IAA608030801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otomar Linhart.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, P., Hulak, M. & Linhart, O. Sperm proteins in teleostean and chondrostean (sturgeon) fishes. Fish Physiol Biochem 35, 567–581 (2009). https://doi.org/10.1007/s10695-008-9261-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-008-9261-y

Keywords

  • Protein
  • Spermatozoa
  • Seminal plasma
  • Motility
  • Fertilisation
  • Cryopreservation