Abstract
Present in the excrement of humans and animals, 17β-estradiol (E2) has been detected in the aquatic environment in a range from several nanograms to several hundred nanograms per liter. In this study, the sensitivities of rare minnows during different life stages to E2 at environmentally relevant (5, 25, and 100 ng l−1) and high (1000 ng l−1) concentrations were compared using vitellogenin (VTG) and gonad development as biomarkers under semistatic conditions. After 21 days of exposure, VTG concentrations in whole-body homogenates were analyzed; the results indicated that the lowest observed effective concentration for VTG induction was 25 ng l−1 E2 in the adult stage, but 100 ng l−1 E2 in the larval and juvenile stages. After exposure in the early life stage, the larval and juvenile fish were transferred to clean water until gonad maturation. No significant difference in VTG induction was found between the exposure and control groups in the adults. However, a markedly increased proportion of females and appearance of hermaphrodism were observed in the juvenile-stage group exposed to 25 ng l−1 E2. These results showed that VTG induction in the adult stage is more sensitive than in larval and juvenile stages following exposure to E2. The juvenile stage may be the critical period of gonad development. Sex ratio could be a sensitive biomarker indicating exposure to xenoestrogens in early-life-stage subchronic exposure tests. The results of this study provide useful information for selecting sensitive biomarkers properly in aquatic toxicology testing.
This is a preview of subscription content, access via your institution.





Abbreviations
- dph:
-
Days post hatch
- LOEC:
-
Lowest observed effect concentration
- E1 :
-
Estrone
- VTG:
-
Vitellogenin
- E2 :
-
17β-Estradiol
- WBH:
-
Whole-body homogenates
- EDCs:
-
Endocrine disrupter chemicals
- ELISA:
-
Enzyme-linked immunosorbent assay
References
Aguayo S, Munoz MJ, de la Torre A et al (2004) Identification of organic compounds and ecotoxicological assessment of sewage treatment plants (STP) effluents. Sci Total Environ 328:69–81. doi:10.1016/j.scitotenv.2004.02.013
Andersen L, Petersen GI, Gessbo Å et al (2001) Zebrafish (Danio rerio) and roach (Rutilus rutilus)—two species suitable for evaluating effects of endocrine disrupting chemicals? Aquat Ecosyst Health Manage 4:275–282. doi:10.1080/146349801753509177
Andersen LA, Holbech H, Gessbo Å et al (2003) Effects of exposure to 17α-ethynylestradiol during early development on sexual differentiation and induction of vitellogenin in zebrafish (Danio rerio). Comp Biochem Physiol C 134:365–374
Billard R, Breton B, Richard M (1981) On the inhibitory effect of some steroids on spermatogenesis in adult rainbow trout (Salmo gairdneri). Can J Zool 59:1479–1487
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
Brion F, Tyler CR, Palazzi X et al (2004) Impacts of 17β-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile- and adult-life stages in Zebrafish (Danio rerio). Aquat Toxicol 68:193–217. doi:10.1016/j.aquatox.2004.01.022
Carballo M, Aguayo S, de la Torre A et al (2005) Plasma vitellogenin levels and gonadal morphology of wild carp (Cyprinus carpio L.) in a receiving rivers downstream of sewage treatment plants. Sci Total Environ 341:71–79. doi:10.1016/j.scitotenv.2004.08.021
Colborn T, Dumanoski D, Myers JP (1996) Our stolen future. Dutton, New York
Desbrow C, Routledge EJ, Brighty GC et al (1998) Identification of estrogenic chemicals in STW effluent. I: chemical fractionation and in vitro biological screening. Environ Sci Technol 32:1549–1558. doi:10.1021/es9707973
Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364. doi:10.1016/S0044-8486(02)00057-1
Dizer H, Fischer B, Sepulveda I et al (2002) Estrogenic effect of leachates and soil extracts from lysimeters spiked with sewage sludge and reference endocrine disrupters. Environ Toxicol 17:105–112. doi:10.1002/tox.10038
Folmar LC, Hemmer MJ, Denslow ND et al (2002) A comparison of the estrogenic potencies of estradiol, ethynylestradiol, diethylstilbestrol, nonylphenol and methoxychlor in vivo and in vitro. Aquat Toxicol 60:101–110. doi:10.1016/S0166-445X(01)00276-4
Folmar LC, Hemmer M, Hemmer R et al (2000) Comparative estrogenicity of estradiol, ethynyl estradiol and diethylstilbestrol in an in vivo, male sheepshead minnow (Cyprinodon variegatus), vitellogenin bioassay. Aquat Toxicol 49:77–88. doi:10.1016/S0166-445X(99)00076-4
Hsiao CD, Tsai HJ (2003) Transgenic zebrafish with fluorescent germ cell: a useful tool to visualize germ cell proliferation and juvenile hermaphroditism in vivo. Dev Biol 262:313–323. doi:10.1016/S0012-1606(03)00402-0
Jin SW, Xu Y, Hui Y et al (2005) Quantitative determination of 8 kinds of estrogenic compound in wastewater. China Water Wastewater 21:94–97
Jobling S, Tyler CR (2006) Introduction: the ecological relevance of chemically induced endocrine disruption in wildlife. Environ Health Perspect 114(S1):7–8. doi:10.1289/ehp.8050
Johnson AC, Aerni HR, Gerritsen A et al (2005) Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices. Water Res 39:47–58. doi:10.1016/j.watres.2004.07.025
Kavlock RJ, Daston GP, de Rosa C et al (1996) Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect 104:715–740. doi:10.2307/3432708
Koger CS, Teh SJ, Hinton DE (2000) Determining the sensitive developmental stages of intersex induction in medaka (Oryzias latipes) exposed to 17-beta-estradiol or testosterone. Mar Environ Res 50:201–206. doi:10.1016/S0141-1136(00)00068-4
Komen J, Lambert JGD, Richter CJJ et al (1995) Endocrine control of sex differentiation in XX female, and in XY and XX male common carp (Cyprinus carpio L.). Proceedings of the fifth international symposium on the reproductive physiology of fish. Fish Symposium 95, Austin, TX, USA, p 383
Länge R, Hutchinson TH, Croudace CP et al (2001) Effects of the synthetic estrogen 17-alpha-ethinylestradiol on the life-cycle of the Fathead Minnow (Pimephales promelas). Environ Toxicol Chem 20:1216–1227. doi :10.1897/1551-5028(2001)020<1216:EOTSEE>2.0.CO;2
Legler J, Broekhof JLM, Brouwer A et al (2000) A novel in vivo bioassay for (xeno-) estrogens using transgenic zebrafish. Environ Sci Technol 34:4439–4444. doi:10.1021/es0000605
Liao T, Jin SW, Yang FX et al (2006) An enzyme-linked immunosorbent assay for rare minnow (Gobiocypris rarus) vitellogenin and comparison of vitellogenin responses in rare minnow and zebrafish (Danio rerio). Sci Total Environ 364:284–294. doi:10.1016/j.scitotenv.2006.02.028
Lu L, Shen YW (2002) Acute toxicity of phenol, alkylbenzene, nitrobenzene and water sample to sword fish (Xiphorus helleri) and rare minnow (Gobiocypris rarus). Res Environ Sci 15:57–59
Nath P, Sahu R, Kabita SK et al (2007) Vitellogenesis with special emphasis on Indian fishes. Fish Physiol Biochem 33:359–366. doi:10.1007/s10695-007-9167-0
Panter GH, Thompson RS, Sumpter JP (1998) Adverse reproductive effects in male fathead minnows (Pimephales promelas) exposed to environmentally relevant concentrations of the natural oestrogens, oestradiol and oestrone. Aquat Toxicol 42:243–253. doi:10.1016/S0166-445X(98)00038-1
Piferrer F (2001) Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197:229–281. doi:10.1016/S0044-8486(01)00589-0
Re MR, Fu TY (1983) Description of a new genus and species of Danioninae from China. Acta Zootaxonomica Sin 8:434–437
Rodgers-Gray TP, Jobling S, Kelly C et al (2001) Exposure of juvenile roach (Rutilus rutilus) to treated sewage effluent induces dose-dependent and persistent disruption in gonadal duct development. Environ Sci Technol 35:462–470. doi:10.1021/es001225c
Routledge EJ, Sheahan D, Desbrow C et al (1998) Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environ Sci Technol 32:1559–1565. doi:10.1021/es970796a
Segner H, Caroll K, Fenske M et al (2003) Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. Ecotoxicol Environ Saf 54:302–314. doi:10.1016/S0147-6513(02)00039-8
Servos MR, Bennie DT, Burnison BK et al (2005) Distribution of estrogens, 17β-estradiol and estrone, in Canadian municipal wastewater treatment plants. Sci Total Environ 336:155–170. doi:10.1016/j.scitotenv.2004.05.025
Shore LS, Gurevitz M, Shemesh M (1993) Estrogen as an environmental pollutant. Bull Environ Contam Toxicol 51:361–366. doi:10.1007/BF00201753
Snyder SA, Keith TL, Verbrugge DA et al (1999) Analytical methods for detection of selected estrogenic compounds in aqueous mixtures. Environ Sci Technol 33:2814–2820. doi:10.1021/es981294f
Soto AM, Sonnenschein C, Chung KL et al (1995) The E-screen assay as a tool to identify estrogens: an update on estrogenic environment pollutants. Environ Health Perspect 103(S7):113–122. doi:10.2307/3432519
Sumpter JP, Jobling S (1995) Vitellogenin as a biomarker for oestrogenic contamination of the aquatic environment. Environ Health Perspect 103:173–178. doi:10.2307/3432529
Thorpe KL, Hetheridge MJ, Hutchinson TH et al (2001) Assessing the biological potency of binary mixtures of environmental estrogens using vitellogenin induction in juvenile rainbow trout (Oncorhynchus mykiss). Environ Sci Toxicol 35:2476–2481
Tyler CR, van Aerle R, Hutchinson TH et al (1999) An in vivo testing system for endocrine disruptors in fish early life stages using induction of vitellogenin. Environ Toxicol Chem 18:337–347. doi :10.1897/1551-5028(1999)018<0337:AIVTSF>2.3.CO;2
Ünal G, Türkoğlu V, Oğuz AR et al (2007) Gonadal histology and some biochemical characteristics of Chalcalburnus tarichi (Pallas, 1811) having abnormal gonads. Fish Physiol Biochem 33:153–165. doi:10.1007/s10695-006-9126-1
U.S. Environmental Protection Agency Strategic plan for the Office of Research and Development. EPA/600/R3-91-063; 1996. Washington, DC, USA
U.S. Environmental Protection Agency a Short-Term Test Method for Assessing the Reproductive toxicity of Endocrine-Disrupting Chemicals Using the Fathead Minnow (Pimephales promelas). EPA/600/R-01/067; 2002. Washington, DC, USA
Van den Belt K, Berckmans P, Vangenechten C et al (2004) Comparative study on the in vitro/in vivo estrogenic potencies of 17β-estradiol, estrone, 17α-ethynylestradiol and nonylphenol. Aquat Toxicol 66:183–195. doi:10.1016/j.aquatox.2003.09.004
Wang JW (1999) Spawning performance and development of oocytes in Gobiocypris rarus. Acta Hydrobiologica Sin 23:161–166
Yamamoto T (1975) Medaka (Killifish): biology and strains. Keigaku Pub. Co., Tokyo
Zha JM, Wang ZJ, Wang N et al (2007) Histological alternation and vitellogenin induction in adult rare minnow (Gobiocypris rarus) after exposure to ethynylestradiol and nonylphenol. Chemosphere 66:488–495. doi:10.1016/j.chemosphere.2006.05.071
Zha JM, Sun LW, Zhou YQ et al (2008) Assessment of 17α-ethinylestradiol effects and underlying mechanisms in a continuous, multigeneration exposure of the Chinese rare minnow (Gobiocypris rarus). Toxicol Appl Pharmacol 226:298–308. doi:10.1016/j.taap. 2007.10.006
Zhong XP, Xu Y, Liang Y et al (2004) Vitellogenin in rare minnow (Gobiocypris rarus): identification and induction by waterborne diethylstilbestrol. Comp Biochem Physiol C 137:291–298
Zhou QF, Jiang GB, Liu JY (2002) Effects of sublethal levels of tributyltin chloride in a new toxicity test organism: the chinese rare minnow (Gobiocypris rarus). Arch Environ Contam Toxicol 42:332–337. doi:10.1007/s00244-001-0014-5
Acknowledgements
The authors express sincere thanks for the financial support from Hi-Tech Research and Development Program of China (2006AA06Z424) and National Basic Research Program of China (2003CB415005) for this study.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liao, T., Guo, Q.L., Jin, S.W. et al. Comparative responses in rare minnow exposed to 17β-estradiol during different life stages. Fish Physiol Biochem 35, 341–349 (2009). https://doi.org/10.1007/s10695-008-9247-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10695-008-9247-9
Keywords
- Biomarker
- Estradiol
- Hermaphrodism
- Sex ratio
- Vitellogenin