Skip to main content

Antioxidative role of selenium against the toxic effect of heavy metals (Cd+2, Cr+3) on liver of rainbow trout (Oncorhynchus mykiss Walbaum 1792)

Abstract

The main purpose of this study is to discuss the effect of Cd+2, Cr+3 and Se metals on biochemical parameters in liver tissue of Oncorhynchus mykiss. The rainbow trout were exposed to heavy metal stress (Cd+2, Cr+3) at 2 ppm dosage. The present study was undertaken to determine the protective effect of selenium treatment at the same dosage (2 ppm) on some biochemical parameters. The activity of catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and the changes in levels of malondialdehyde (MDA) from biochemical parameters were determined in liver tissue of the fish groups exposed to heavy metals, especially for the selenium-applied groups. Results of this study showed that the activities of CAT, GSH-Px and SOD in the tissues of fish exposed to the stress of Cd+2 and Cr+3 were significantly lower than the control groups (P < 0.05). Meanwhile, the closer values to the control groups were obtained in selenium-added groups (Cr+3 + Se+4, Cd+2 + Se+4). For the level of MDA, the last production of lipid peroxidation showed increases (< 0.05) in the groups exposed to the metal stress, whereas significant decreases were obtained in selenium-applied groups. The result of the statistical evaluation showed that the negative effects occurring in the biochemical parameters of the applied groups exposed to the toxicity of heavy metal were significantly eliminated (P < 0.05) as a result of selenium treatment.

This is a preview of subscription content, access via your institution.

References

  • Berntssen MH, Aatland A, Handy RD (2003) Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat Toxicol 65:55–72

    Article  PubMed  CAS  Google Scholar 

  • Beuge JA, Aust SD (1978) Microsomal lipids peroxidation. Methods Enzymol 52:302–310

    Article  Google Scholar 

  • Bocchetti R, Fattorini D, Gambi MC, Regoli F (2004) Trace metal concentrations and susceptibility to oxidative stress in the polychaete Sabella spallanzanii (Gmelin) (Sabellidae): potential role of antioxidants in revealing stressful environmental conditions in the Mediterranean. Arch Environ Contam Toxicol 46:353–361

    Article  PubMed  CAS  Google Scholar 

  • Cheung CCC, Siu WHL, Richardson BJ, De Luca-Abbott SB, Lam PKS (2004) Antioxidant responses to benzo[a]pyreene and Arochlor 1254 exposure in the green-lipped mussel, Perna viridis. Environ Pollut 128:393–403

    Article  PubMed  CAS  Google Scholar 

  • Company R, Serafim A, Bebianno MJ, Cosson R, Shillito B, Fiala-Medioni A (2004) Effect of cadmium, copper and mercury on antioxidant enzyme activities and lipid peroxidation in the gills of the hypothermal vent mussel Bathymodiolus azoricus. Mar Environ Res 58:377–381

    Article  PubMed  CAS  Google Scholar 

  • Draper HH, Squires EJ, Mahmooch H, Wu J, Agarwal S, Handley M (1993) A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radicals Biol Med 15:353–363

    Article  CAS  Google Scholar 

  • Handy RD, Sims DW, Giles A, Campbell HA, Musonda MM (1999) Metabolic trade-off between locomotion and detoxification for maintenance of blood chemistry and growth parameters by rainbow trout (Oncorhynchus mykiss) during chronic dietary exposure to copper. Aquat Toxicol 47:23–41

    Article  CAS  Google Scholar 

  • Hidalgo MC, Expósito A, Palma JM, Manuel de la Higuera (2002) Oxidative stress generated by dietary Zn-deficiency: studies in rainbow trout (Oncorhynchus mykiss). Int J Biochem Cell Biol 34:183–193

    Google Scholar 

  • Hintz FH (1999) The many phases of selenium. World Equine Vet Rev 4:9–22

    Google Scholar 

  • Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radicals Biol Med 9:515–540

    Article  CAS  Google Scholar 

  • Kappus H, Sies H (1981) Toxic drug effects associated with oxygen metabolism, redox cycling and lipid peroxidation. Experentia 37:1233–1241

    Article  CAS  Google Scholar 

  • Kelly SA, Havrilla CM, Brady TC, Abramo KH, Levin ED (1998) Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environ Health Perpect 106:375–384

    Article  CAS  Google Scholar 

  • Kelly F, Gorbi S, Frenzilli G, Nigro M, Corsi I, Focardi S, Winston GW (2002) Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach. Mar Environ Res 54:419–423

    Article  Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650

    Article  PubMed  CAS  Google Scholar 

  • Lacroix A, Hontela A (2004) A comparative assessment of the adrenotoxic effects of cadmium in two teleost species, rainbow trout,Oncorhynchus mykiss, and yellow perch, Perca flavescens. Aquat Toxicol 67:13–21

    Article  PubMed  CAS  Google Scholar 

  • Lawrance RA, Burk RF (1976) Glutathione peroxidase activity in selenium- deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  Google Scholar 

  • Livingstone DR (1998) Organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish. Comp Environ Physiol 120A: 43–49

    CAS  Google Scholar 

  • Lowry O, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Luck H (1963) Methods of enzymatic analysis. Verlag Chemie, Academic Press. 885–888

  • McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J Bio Chem 244:6049–6055

    CAS  Google Scholar 

  • Mruk DD, Silvestrini B, Meng-yun Mo, Cheng YC (2002) Antioxidant superoxide dismutase- a review: its function, regulation in the testis, and role in male fertility. Contraception 65:305–311

    Article  PubMed  CAS  Google Scholar 

  • Munoz MJ, Carballo M, Tarazona JV (1991) The effect of sublethal levels of copper and cyanide on some biochemical parameters of Rainbow trout along subacute exposition. Comp Biochem Physiol 100:577–582

    Article  Google Scholar 

  • Nogueira CW, Quinhones EB, Jung EAC, Zeni G, Rocha JBT (2003) Anti-Inflammatory and antinociceptive activity of biphenyl diselenide. Inflamm Res 52:56–63

    Article  PubMed  CAS  Google Scholar 

  • Oost RVD, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  • Radi AA, Matkovics B (1988) Effects of metal ions on the antioxidant enzyme activities, protein content and lipid peroxidation of carp tissues. Comp Biochem Physiol 90:69–72

    CAS  Google Scholar 

  • Romeo M, Bennani N, Gnassia-Barelli M, Lafaurie M, Girard JP (2000) Cadmium and copper display different responses towards oxidative stress in the kidney of the sea baas Dicentrarchus labrax. Aquat Toxicol 48:185–194

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Hudson LG, Liu KJ (2004) Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radical Bio Med 37:582–593

    Article  CAS  Google Scholar 

  • Sieja K, Talerczyk M (2004) Selenium as an element in the treatment of ovarian cancer in women receiving chem otherapy. Gynecol Oncol 93:320–327

    Article  PubMed  CAS  Google Scholar 

  • Vaglio A, Landriscina C (1999) Changes in liver enzyme activity in the teleost Sparus aurata in response to cadmium intoxication. Ecotox Environ Safe 43:111–116

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotox Environ Safe 64(2):178–189

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Inonu University Research Fund (BAP 2004/27) is gratefully acknowledged for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeliha Selamoglu Talas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Talas, Z.S., Orun, I., Ozdemir, I. et al. Antioxidative role of selenium against the toxic effect of heavy metals (Cd+2, Cr+3) on liver of rainbow trout (Oncorhynchus mykiss Walbaum 1792). Fish Physiol Biochem 34, 217–222 (2008). https://doi.org/10.1007/s10695-007-9179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-007-9179-9

Keywords

  • Antioxidant enzyme
  • Heavy metal (Cd+2, Cr+3)
  • Lipid peroxidation
  • Liver
  • Oncorhynchus mykiss
  • Oxidative stress
  • Selenium