Skip to main content

Neuronal nitric oxide synthase immunoreactivity in forebrain, pineal, and pituitary of Oreochromis mossambicus (Tilapia)

Abstract

Ultrastructural localization of neuronal nitric oxide synthase (nNOS) in olfactory receptor neurons (ORNs) and immunohistochemical detection of the enzyme in forebrain, pituitary, and pineal were undertaken in the teleost Oreochromis mossambicus. Application of post-embedding immunoelectron microscopy revealed nNOS-labeled gold particles on the cilia, microvilli, mitochondria, and Golgi complex of the ORNs. Gold particles were also seen adhered to microtubules in the axons that extend to the olfactory nerve layer in the olfactory bulb. With light microscopy, nNOS-immunoreactive neurons were seen in preoptic area, nucleus entopeduncularis, and parvocellular, and magnocellular subdivisions of nucleus preopticus (NPO). Numerous cerebrospinal fluid-contacting cells lining the wall of the third ventricle at the level of the NPO showed intense immunoreactivity. Intense to moderate immunoreactivity was observed in the neurons of suprachiasmatic nucleus, nucleus lateralis tuberis pars lateralis, and nucleus recessus lateralis. While several immunoreactive fibers were detected in medial olfactory tract, suprachiasmatic area, and hypothalamo-hypophyseal tract, a few were seen throughout the telencephalon, in the optic chiasma, tuberal area, and inferior lobes. In the pituitary, nNOS-containing fibers were seen in the neurohypophysis, rostral pars distalis, proximal pars distalis, and pars intermedia. While intense immunoreactivity was noticed in some cells in the pineal, immunoreactive fibers were detected in the pineal stalk as well as parenchyma. We suggest that nitric oxide may play a role in processing olfactory and photic information, circadian rhythms, and neuroendocrine regulation in tilapia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

A:

Anterior thalamic nucleus

AC:

Anterior commissure

bNOS:

Brain NOS

BSA:

Bovine serum albumin

CB:

Cerebellum

D:

Area dorsalis telencephali

Da:

D pars anterior

Dc:

D pars centralis

Dca:

Anterior subdivision of Dc

Dcad:

Dorsal part of Dca

Dcav:

Ventral part of Dca

Dcd:

Dorsal subdivision of Dc

Dcl:

Lateral subdivision of Dc

Dcm:

Medial subdivision of Dc

Dcp:

Posterior subdivision of Dc

Dd:

D pars dorsalis

DiI:

Fluorescent indocarbocyanine

Dl:

D pars lateralis

Dla:

Anterior subdivision of Dl

Dld:

Dorsal subdivision of Dl

Dlp:

Posterior subdivision of Dl

Dlv:

Ventral subdivision of Dl

Dm:

D pars medialis

Dma:

Anterior subdivision of Dm

Dmd:

Dorsal subdivision of Dm

Dmdd:

Dorsal part of Dmd

Dmdv:

Ventral part of Dmd

Dmv:

Ventral subdivision of Dm

Dmvd:

Dorsal part of Dmv

Dmvv:

Ventral part of Dmv

Dp:

D pars posterioris

flm:

Fasciculus longitudinalis medialis

HC:

Horizontal commissure

HG:

Habenular ganglion

HHT:

Hypothalamo-hypophyseal tract

Hyp:

Hypothalamus

IL:

Inferior lobe

L:

Lumen

LFB:

Lateral forebrain bundle

LOT:

Lateral olfactory tract

MFB:

Medial forebrain bundle

MOT:

Medial olfactory tract

MT:

Midbrain tegmentum

NADPHd:

Nicotinamide adenine phosphate diaphorase

Nat:

Nucleus anterior tuberis

NE:

Nucleus entopeduncularis

Nflm:

Nucleus of the flm

Nhd:

Nucleus hypothalamicus dorsalis

NLT:

Nucleus lateralis tuberis

NLTl:

NLT pars lateralis

NLTm:

NLT pars medialis

nNOS:

Neuronal NOS

NO:

Nitric oxide

NOS:

NO synthase

NPO:

Nucleus preopticus

NPOm:

NPO pars magnocellularis

NPOp:

NPO pars parvocellularis

Npt:

Nucleus posterior tuberis

NRL:

Nucleus of RL

NRLl:

Lateral part of NRL

NRLm:

Medial part of NRL

NRLs:

Superior part of NRL

NRP:

Nucleus of RP

NS:

Nonsensory

Nte:

Nucleus of taeniae

OB:

Olfactory bulb

OC:

Optic chiasma

ON:

Optic nerve

ORN:

Olfactory receptor neuron

OTec:

Optic tectum

PB:

Phosphate buffer

PBS:

Phosphate buffered saline

PC:

Posterior commissure

PFA:

Paraformaldehyde

PG:

Pineal gland

PI:

Pars intermedia

Pit:

Pituitary

POA:

Preoptic area

POR:

Preoptic recess

PPD:

Proximal pars distalis part of Pit

PS:

Pineal stalk

PVO:

Paraventricular organ

RL:

Recessus lateralis

RP:

Recessus posterioris

RPD:

Rostral pars distalis

S:

Sensory

SCA:

Suprachiasmatic area

SCN:

Suprachiasmatic nucleus

SP:

Spinal cord

TA:

Tuberal area

Tel:

Telencephalon

Tlo:

Torus longitudinalis

TS:

Torus semicircularis

V:

Ventricle

Vd:

Area ventralis telencephali pars dorsalis

Vl:

Area ventralis telencephali pars lateralis

Vm:

Ventromedial thalamic nucleus

Vn:

Nucleus of area ventralis telencephali

Vp:

Area ventralis telencephali pars posterioris

Vs:

Area ventralis telencephali pars supracommissuralis

Vv:

Area ventralis telencephali pars ventralis

References

  • Agostino PV, Ferreyra GA, Murad AD, Watanabe Y, Golombek DA (2004) Diurnal, circadian and photic regulation of calcium/calmodulin-dependent kinase II and neuronal nitric oxide synthase in the hamster suprachiasmatic nuclei. Neurochem Int 44:617–625

    Article  PubMed  CAS  Google Scholar 

  • Ando H, Shi Q, Kusakabe T, Ohya T, Suzuki N, Urano A (2004) Localization of mRNAs encoding α and β subunits of soluble guanylyl cyclase in the brain of rainbow trout: comparison with the distribution of neuronal nitric oxide synthase. Brain Res 1013:13–29

    Article  PubMed  CAS  Google Scholar 

  • Anglade I, Zandbergen T, Kah O (1993) Origin of the pituitary innervation in the goldfish. Cell Tissue Res 273:345–355

    Article  Google Scholar 

  • Anken RH, Rehman H (1996) An atlas on the distribution of NADPH-diaphorase in the brain of the highly derived swordtail fish Xiphorous helleri (Atheriformes: Teleostei). J Brain Res 37:421–449

    CAS  Google Scholar 

  • Arnhold S, Andressen C, Bloch W, Mai JK, Addicks K (1997) NO synthase-II is transiently expressed in embryonic mouse olfactory receptor neurons. Neurosci Lett 229:165–168

    Article  PubMed  CAS  Google Scholar 

  • Baby SM, Ueck M, Prasada Rao PD (2000) Gonadotropin-releasing hormone-immunoreactive neurons and associated nicotinamide adenine dinucleotide phosphate-diaphorase-positive neurons in the brain of a teleost, Rhodeus amarus. Gen Comp Endocrinol 120:44–54

    Article  PubMed  CAS  Google Scholar 

  • Billard R, Peter RE (1977) Gonadotropin release after implantation of anti-oestrogens in the pituitary and hypothalamus of goldfish, Carassius auratus. Gen Comp Endocrinol 32:213–221

    Article  PubMed  CAS  Google Scholar 

  • Bonavera JJ, Sahu A, Kalra PS, Kalra SP (1993) Evidence that nitric oxide may mediate the ovarian steroid-induced luteinizing hormone surge: involvement of excitatory amino acids. Endocrinology 133:2481–2487

    Article  PubMed  CAS  Google Scholar 

  • Bordieri L, Cioni C (2004) Co-localization of neuronal nitric oxide synthase with arginine-vasotocin in the preoptic-hypothalamo-hypophyseal system of the teleost Oreochromis niloticus. Brain Res 1015:181–185

    Article  PubMed  CAS  Google Scholar 

  • Bordieri L, Persichini T, Venturini G, Cioni C (2003) Expression of nitric oxide synthase in the preoptic-hypothalamo-hypophyseal system of the teleost Oreochromis niloticus. Brain Behav Evol 62:43–55

    Article  PubMed  Google Scholar 

  • Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770

    Article  PubMed  CAS  Google Scholar 

  • Breer H, Klem T, Boekhoff I (1992) Nitric oxide mediated formation of cyclic GMP in the olfactory system. NeuroReport 3:1030–1032

    Article  PubMed  CAS  Google Scholar 

  • Brüning G, Katzbach R, Mayer B (1995) Histochemical and immunocytochemical localization of nitric oxide synthase in the central nervous system of the goldfish, Carassius auratus. J Comp Neurol 358:353–382

    Article  PubMed  Google Scholar 

  • de Vlaming VL (1975) Effects of pinealectomy on gonadal activity in the cyprinid teleost, Notemigonus crysoleucas. Gen Comp Endocrinol 26:36–49

    Article  PubMed  Google Scholar 

  • de Vlaming VL, Vodicnik MJ (1978) Seasonal effects of pinealectomy on gonadal activity in the goldfish, Carassius auratus. Biol Reprod 19:57–63

    Article  PubMed  Google Scholar 

  • Golombek DA, Agostino PV, Plano SA, Ferreyra GA (2004) Signaling in the mammalian circadian clock: the NO/cGMP pathway. Neurochem Int 45:929–936

    Article  PubMed  CAS  Google Scholar 

  • Guix FX, Uribesalgo I, Coma M, Munoz FJ (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126–152

    Article  PubMed  CAS  Google Scholar 

  • Hanazawa T, Konno A, Kaneko T, Tanaka K, Ohshima H, Esumi H, Chiba T (1994) Nitric oxide synthase immunoreactive nerve fibers in the nasal mucosa of the rat. Brain Res 657:7–13

    Article  PubMed  CAS  Google Scholar 

  • Holl A (1965) Vergleichende morphologische und histologische Untersuchungen am Geruchsorgan der Knochenfische. Z Morphol Ökol Tiere 54:707–782

    Article  Google Scholar 

  • Holmqvist BI, Östholm T, Alm P, Ekström P (1994) Nitric oxide synthase in the brain of a teleost. Neurosci Lett 171:205–208

    Article  PubMed  CAS  Google Scholar 

  • Hopkins DA, Steinbusch HWM, Ittersum MM-V, de Vente J (1996) Nitric oxide synthase, cGMP, and NO-mediated cGMP production in the olfactory bulb of the rat. J Comp Neurol 375:641–658

    Article  PubMed  CAS  Google Scholar 

  • Jadhao AG, Malz CR (2003) Localization of the neuronal form of nitric oxide synthase (bNOS) in the diencephalon and pituitary gland of the catfish, Synodontis multipunctatus: an immunocytochemical study. Gen Comp Endocrinol 132:278–283

    Article  PubMed  CAS  Google Scholar 

  • Jadhao AG, Malz CR (2004) Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity in the brain of a cichlid fish, with remarkable findings in the entopeduncular nucleus: a histochemical study. J Chem Neuroanat 27:75–86

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto J, Keverne EB, Hardwick J, Emson PC (1993) Localization of nitric oxide synthase in the mouse olfactory and vomeronasal system: a histochemical, immunological and in situ hybridization study. Eur J Neurosci 5:1684–1694

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni AP, Getchell TV, Getchell ML (1994) Neuronal nitric oxide synthase is localized in extrinsic nerves regulating peri receptor processes in the chemosensory nasal mucosae of rats and humans. J Comp Neurol 345:125–138

    Article  PubMed  CAS  Google Scholar 

  • Lema SC, Nevitt GA (2001) Re-evaluating NADPH-diaphorase histochemistry as an indicator of nitric oxide synthase: an examination of the olfactory system of coho salmon (Oncorhynchus kisutch). Neurosci Lett 313:1–4

    Article  PubMed  CAS  Google Scholar 

  • Parhar IS, Sakuma Y (1995) GnRH expression during development. In: Itakura T, Maeda T (eds) The hypothalamus, from basic to clinical neuroscience, IV. Brain Shuppan, Tokyo, pp 1–19

    Google Scholar 

  • Peter RE, Yu KL, Marchant TA, Rosenblum PM (1990) Direct neural regulation of the teleost adenohypophysis. J Exp Zool 4:84–89

    Article  Google Scholar 

  • Rama Krishna NS, Subhedar N (1989) Hypothalamic innervation of the pituitary in the catfish, Clarias batrachus (L.): a retrograde horseradish peroxidase study. Neurosci Lett 107:39–44

    Article  PubMed  CAS  Google Scholar 

  • Rettori V, Belova N, Dees WL, Nyberg CL, Gimeno M, McCann SM (1993) Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proc Natl Acad Sci USA 90:10130–10134

    Article  PubMed  CAS  Google Scholar 

  • Roskams AJ, Bredt DS, Dawson TM, Ronnett GV (1994) Nitric oxide mediates the formation of synaptic connections in developing and regenerating olfactory receptor neurons. Neuron 13:289–299

    Article  PubMed  CAS  Google Scholar 

  • Sakai M, Sawada T, Nishimura T, Nagatsu I (1996) Expression of nitric oxide synthase in the mouse and human nasal mucosa. Acta Histochem Cytochem 29:177–179

    CAS  Google Scholar 

  • Sakharkar AJ, Singru PS, Sarkar K, Subhedar N (2005) Neuropeptide Y in the forebrain of the adult male cichlid fish Oreochromis mossambicus: distribution, effects of castration and testosterone replacement. J Comp Neurol 489:148–165

    Article  PubMed  CAS  Google Scholar 

  • Satou M (1990) Synaptic organization, local neuronal circuitry, and functional segregation of the teleost olfactory bulb. Prog Neurobiol 34:115–142

    Article  PubMed  CAS  Google Scholar 

  • Schild D, Restrepo D (1998) Transduction mechanisms in vertebrate olfactory receptor cells. Physiol Rev 78:429–466

    PubMed  CAS  Google Scholar 

  • Schoenfeld TA, Knott TK (2002) NADPH diaphorase activity in olfactory receptor neurons and their axons conforms to a rhinotopically-distinct dorsal zone of the hamster nasal cavity and main olfactory bulb. J Chem Neuroanat 24:269–285

    Article  PubMed  CAS  Google Scholar 

  • Singru PS, Sakharkar AJ, Subhedar N. (2003) Neuronal nitric oxide synthase in the olfactory system of an adult teleost fish Oreochromis mossambicus. Brain Res 977:157–168

    Article  PubMed  CAS  Google Scholar 

  • van Esseveldt LE, Lehman MN, Boer GJ (2000) The suprachiasmatic nucleus and the circadian time-keeping system revisited. Brain Res Rev 33:34–77

    Article  PubMed  Google Scholar 

  • Villani L, Guarnieri T (1996) Localization of nitric oxide synthase in the goldfish retina. Brain Res 743:353–356

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:755–784

    Article  PubMed  CAS  Google Scholar 

  • Virgili M, Poli A, Beraudi A, Giuliani A, Villani L (2001) Regional distribution of nitric oxide synthase and NADPH-diaphorase activities in the central nervous system of teleosts. Brain Res 901:202–207

    Article  PubMed  CAS  Google Scholar 

  • Warembourg M, Leroy D, Jolivet A (1999) Nitric oxide synthase in the guinea pig preoptic area and hypothalamus: distribution, effect of estrogen, and colocalization with progesterone receptor. J Comp Neurol 407:207–227

    Article  PubMed  CAS  Google Scholar 

  • Xiao M, Ding J, Wu L, Han Q, Wang H, Zuo G, Hu G (2005) The distribution of neural nitric oxide synthase-positive cerebrospinal fluid-contacting neurons in the third ventricular wall of male rats and coexistence with vasopressin or oxytocin. Brain Res 1038:150–162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Indian Council of Agricultural Research [F. no. 4(26)/97 ASR-IV and 4(60)/98 ASR-I] and the Department of Science and Technology (SP/SO/C-39/99), New Delhi, India. The electron microscopy work was conducted at the All India Institute of Medical Sciences, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishikant Subhedar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Praful S. Singru, Amul J. Sakharkar, Minakshi Mazumdar et al. Neuronal nitric oxide synthase immunoreactivity in forebrain, pineal, and pituitary of Oreochromis mossambicus (Tilapia). Fish Physiol Biochem 33, 297–309 (2007). https://doi.org/10.1007/s10695-007-9169-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-007-9169-y

Keywords

  • Hypothalamus
  • Nitric oxide
  • Olfactory receptor neurons
  • Pineal
  • Pituitary
  • Post-embedding immunoelectron microscopy
  • Preoptic area
  • Suprachiasmatic nucleus
  • Teleost
  • Tilapia