Skip to main content
Log in

Spatiotemporal expression of zebrafish D-amino acid oxidase during early embryogenesis

  • Original Paper
  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

D-amino acid oxidase (DAO, EC 1.4.3.3) is one of the flavoenzymes in peroxisomes catalyzing the oxidation of D-amino acids to α-imino acids. By reverse transcription-polymerase chain reaction, DAO cDNA was cloned from the mRNA of zebrafish embryos. The deduced zebrafish DAO amino acid sequence revealed a 348-amino acid polypeptide containing two FAD-binding sites (amino acids positions 7G to 12G, and 236V to 247W), and a peroxisomal targeting signal sequence (346Ser-347Arg-348Leu) at the C-terminal end. Following comparison of the sequences, we found that the zebrafish DAO polypeptide shared the sequence identities of 93%, 79%, 77%, 77%, 46%, 43% and 25% of the reported DAO of carp, human, mouse, pig, Streptomyces coelicor, Rhodotorula gracilis and Schizosaccharomyces pombe, respectively. Whole-mount in situ hybridization revealed that dao was a maternally inherited gene and that its expression was first observed in the zygote period, gradually down-regulated from the cleavage period to the early blastula stages, and had declined to an undetectable level at 6 h post-fertilization (hpf). At 18-hpf, the zebrafish dao transcripts were detected in a very weak manner, and their expression was restricted in the future head and brain regions as well as in the yolk syncytial layers of the yolk and yolk extension regions. At later stages, dao expression was detected in the brain, gut, swimming bladder, pronephric duct, optic tectum, ventrolateral tract and in the floor plate of the developing spinal cord. The enzymatic activities of DAO were also examined and showed that the DAO enzyme activities were expressed in a dynamic and stage-dependent manner: first it was detected at the 1-cell stage at an extremely low level (0.007 ± 0.005 U/mg), reached the maximum amount at 6 days post-fertilization (dpf) (0.323 ± 0.04 U/mg), and gradually down-regulated to the basal level (0.019 ± 0.005 U/mg) in a 1-month juvenile. From these observations, we conclude that zebrafish dao is a maternally inherited gene, and that its expression was restricted in some neurons, gut, and pronephros and could be used as a good marker for the study of pronephridial development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almond SL, Fradley RL, Armstrong EJ, Heavens RB, Rutter AR, Newman RJ, Chiu CS, Konno R, Hutson PH, Brandon NJ (2006) Behavioral and biochemical characterization of a mutant mouse strain lacking D-amino acid oxidase activity and its implications for schizophrenia. Mol Cell Neurosci 32:324–334

    Article  PubMed  CAS  Google Scholar 

  • Chen YH, Tsai HJ (2002) Treatment with myf5-morpholino results in somite patterning and brain formation defects in zebrafish. Differentiation 70:447–456

    Article  PubMed  CAS  Google Scholar 

  • Chen YH, Lee WC, Liu CF, Tsai HJ (2001) Molecular structure, dynamic expression, and promoter analysis of zebrafish (Danio rerio) myf-5 gene. Genesis 29:22–35

    Article  PubMed  CAS  Google Scholar 

  • Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, Puech A, Tahri N, et al (2002) Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99:13675–13680

    Article  PubMed  CAS  Google Scholar 

  • Conlon HD, Baqai J, Baker K, Shen YQ, Wong BL, Noiles R, Rausch CW (1995) Two-step immobilized enzyme conversion of cephalosporin C to 7-aminocephalosporanic acid. Biotechnol Bioeng 46:510–513

    Article  CAS  PubMed  Google Scholar 

  • Cox JA, Kucenas S, Voigt MM (2005) Molecular characterization and embryonic expression of the family of N-methyl-D-aspartate receptor subunit genes in the zebrafish. Dev Dyn 234:756–766

    Article  PubMed  CAS  Google Scholar 

  • Fujii N (2005) D-amino acid in elder tissues. Biol Pharm Bull 28:1585–1589

    Article  PubMed  CAS  Google Scholar 

  • Fukui K, Miyake Y (1992) Molecular cloning and chromosomal localization of a human gene encoding D-amino-acid oxidase. J Biol Chem 267:18631–18638

    PubMed  CAS  Google Scholar 

  • Glockner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 100:8298–8303

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto A, Nishikawa T, Oka T, Takahashi K (1993) Endogenous D-serine in rat brain: N-methyl-D-aspartate receptor-related distribution and aging. J Neurochem 60:783–786

    Article  PubMed  CAS  Google Scholar 

  • Holmes RS (1976) Genetics of peroxisomal enzymes in the mouse: nonlinkage of D-amino acid oxidase locus (DAO) to catalase (CS) and L-alpha-hydroxyacid oxidase (HAO-1) loci on chromosome 2. Biochem Genet 14:981–987

    Article  PubMed  CAS  Google Scholar 

  • Hostetter CL, Sullivan-Brown JL, Burdine RD (2003) Zebrafish pronephros: a model for understanding cystic kidney disease. Dev Dyn 228:514–522

    Article  PubMed  CAS  Google Scholar 

  • Kapoor R, Lim KSY, Cheng A, Garrick T, Kapoor V (2006) Preliminary evidence for a link between schizophrenia and NMDA–glycine site receptor ligand metabolic enzymes, D-amino acid oxidase (DAAO) and kynurenine aminotransferase-1 (KAT-1). Brain Res 1106:205–210

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    PubMed  CAS  Google Scholar 

  • Konno R (1998) Rat D-amino-acid oxidase cDNA: rat D-amino-acid oxidase as an intermediate form between mouse and other mammalian D-amino-acid oxidases. Biochim Biophys Acta 1395:165–170

    PubMed  CAS  Google Scholar 

  • Konno R, Yasumura Y (1984) Brain and kidney D-amino acid oxidases are coded by a single gene in the mouse. J Neurochem 42:584–586

    Article  PubMed  CAS  Google Scholar 

  • Konno R, Isobe K, Niwa A, Yasumura Y (1988) Lack of D-amino-acid oxidase activity causes a specific renal aminoaciduria in the mouse. Biochim Biophys Acta 967:382–390

    PubMed  CAS  Google Scholar 

  • Krebs HA (1935) Metabolism of amino acids: deamination of amino acids. Biochem J 29:1620–1644

    PubMed  CAS  Google Scholar 

  • Maekawa M, Watanabe M, Yamaguchi S, Konno R, Hori Y (2005) Spatial learning and long-term potentiation of mutant mice lacking D-amino-acid oxidase. Neurosci Res 53:34–38

    Article  PubMed  CAS  Google Scholar 

  • Mizutani H, Miyahara I, Hirotsu K, Nishina Y, Shiga K, Setoyama C, Miura R (1996) Three-dimensional structure of porcine kidney D-amino acid oxidase at 3.0 Å resolution. J Biochem (Tokyo) 120:14–17

    CAS  Google Scholar 

  • Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, Zaitsu K (2001) Determination of free D-aspartic acid, D-serine and D-alanine in the brain of mutant mice lacking D-amino-acid oxidase activity. J Chromatogr B 757:119–125

    CAS  Google Scholar 

  • Nakajima N, Conrad D, Sumi H, Suzuki K, Esaki N, Wandrey C, Soda K (1990) Continuous conversion to optically pure L-methionine from D-enantiomer contaminated preparations by an immobilized enzyme membrane reactor. J Ferment Bioeng 70:322–325

    Article  CAS  Google Scholar 

  • Nusslein-Volhard C, Dahm R (2002) Zebrafish. Oxford University Press, NY, USA

    Google Scholar 

  • Park HK, Shishido Y, Ichise-Shishido S, Kawazoe T, Ono K, Iwana S, Tomita Y, Yorita K, Sakai T, Fukui K (2006) Potential role for astroglial D-amino acid oxidase in extracellular D-serine metabolism and cytotoxicity. J Biochem 139:295–304

    Article  PubMed  CAS  Google Scholar 

  • Peterson GL (1983) Determination of total protein. Methods Enzymol 91:95–119

    Article  PubMed  CAS  Google Scholar 

  • Pilone MS (2000) D-amino acid oxidase: new findings. Cell Mol Life Sci 57:1732–1747

    Article  PubMed  CAS  Google Scholar 

  • Redenbach M, Kieser HM, Denapaite D, Eichner A, Cullum J, Kinashi H, Hopwood DA (1996) A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96

    Article  PubMed  CAS  Google Scholar 

  • Sarower MG, Okada S, Abe H (2003a) Molecular characterization of D-amino acid oxidase from common carp Cyprinus carpio and its induction with exogenous free D-alanine. Arch Biochem Biophys 420:121–129

    Article  CAS  Google Scholar 

  • Sarower MG, Matsui T, Abe H (2003b) Distribution and characteristics of D-amino acid and D-aspartate oxidases in fish tissues. J Exp Zool 295A:151–159

    Article  CAS  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92:3948–3952

    Article  PubMed  CAS  Google Scholar 

  • Sonawane VC (2006) Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes. Crit Rev Biotechnol 26:95–120

    Article  PubMed  CAS  Google Scholar 

  • Tishkov VI, Khoronenkova SV (2005) D-amino acid oxidase: structure, catalytic mechanism, and practical application. Biochemistry (Mosc) 70:40–54

    CAS  Google Scholar 

  • Umhau S, Pollegioni L, Molla G, Diederichs K, Welte W, Pilone MS, Ghisla S (2000) The X-ray structure of D-amino acid oxidase at very high resolution identifies the chemical mechanism of flavin-dependent substrate dehydrogenation. Proc Natl Acad Sci USA 97:12463–12468

    Article  PubMed  CAS  Google Scholar 

  • Wang LZ, Zhu XZ (2003) Spatiotemporal relationships among D-serine, serine racemase, and D-amino acid oxidase during mouse postnatal development. Acta Pharmacol Sin 24:965–974

    PubMed  CAS  Google Scholar 

  • Watanabe T, Motomura Y, Suga T (1978) New colorimetric determination of D-amino acid oxidase and urate oxidase activity. Anal Biochem 86:310–315

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Science Council, Republic of China, under grant number NSC 94-2313-B-032-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yau-Hung Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YH., Chen, WL., Wang, YH. et al. Spatiotemporal expression of zebrafish D-amino acid oxidase during early embryogenesis. Fish Physiol Biochem 33, 73–80 (2007). https://doi.org/10.1007/s10695-006-9118-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-006-9118-1

Keywords

Navigation