Skip to main content

Effects of open- and closed-system temperature changes on blood O2-binding characteristics of Atlantic bluefin tuna (Thunnus thynnus)

Abstract

We investigated the effects of open- and closed-system temperature changes on the O2 affinity of Atlantic bluefin tuna (Thunnus thynnus) blood using in vitro methods essentially identical to those previously employed on tropical tuna species. Bluefin tuna blood has a general O2 affinity (P 50 = 2.6–3.1 kPa or 19–23 mm Hg at 0.5% CO2) similar to that of skipjack tuna, yellowfin tuna, and kawakawa blood (P 50 = 2.8–3.1 kPa at 0.5% CO2) but significantly above that of bigeye tuna blood (P 50 = 1.6–2.0 kPa at 0.5% CO2). We therefore hypothesize that bluefin tuna are less tolerant of hypoxia than bigeye tuna. Further, we found the P 50 of bluefin tuna blood to be slightly reduced by a 10°C open-system temperature increase (e.g., from 4.83 kPa at 15°C to 3.95 kPa at 25°C) and to be completely unaffected by a 10°C closed-system temperature change. Bluefin tuna blood, therefore, had a significantly reduced Bohr effect when subjected to the inevitable changes in P CO 2 and plasma pH that accompany closed-system temperature shifts (0.04–0.09 Δlog P50ΔpH−1) compared with the effects of changes in plasma pH accomplished by changing P CO 2 alone (0.81–0.94 Δlog P50 Δ pH−1). This response is similar to that of skipjack tuna blood, but different from yellowfin or bigeye tuna blood. During closed-system temperature changes at oxygen levels above P 50, however, bluefin tuna blood showed a reversed temperature effect (i.e., P O 2 decreased in response to an increase in temperature). Unlike in other tuna species, temperature effects on O2 affinity of bluefin tuna whole blood were similar to those previously reported for hemoglobin solutions, suggesting that red cell-mediated ligand changes are not involved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Barkley RA, Neill WH, Gooding RM (1978) Skipjack tuna, Katsuwonus pelamis, habitat based on temperature and oxygen requirements. Fish Bull US 76:653–662

    Google Scholar 

  • Bigelow K, Hampton J, Miyabe N (2002) Application of a habitat-based model to estimate effective longline fishing effort and relative abundance of Pacific bigeye tuna (Thunnus obesus). Fish Oceanogr 11:143–155

    Article  Google Scholar 

  • Block BA, Keen JE, Castillo B, Dewar H, Freund EV, Marcinek DJ, Brill RW, Farwell C (1997) Environmental preferences of yellowfin tuna (Thunnus albacares) at the northern extent of its range. Mar Biol 130:119–132

    Article  Google Scholar 

  • Block BA, Dewar H, Blackwell SB, Williams T, Prince E, Boustany AM, Farwell C, Dau DJ, Seitz A (2001a) Archival and pop-up satellite tagging of Atlantic bluefin tuna. In: Sibert J, Neilson J (eds) Methods and technologies in fish biology and fisheries, vol 1. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 65–88

    Google Scholar 

  • Block BA, Dewar H, Blackwell SB, Williams TD, Prince ED, Farwell CJ, Boustany A, Teo SHL, Sietz A, Walli A, Fudge D (2001b) Migratory movements, depth preferences, and the thermal biology of Atlantic bluefin tuna. Science (Washington, DC) 293:1310 –1314

    Article  CAS  Google Scholar 

  • Bourne PK, Cossins AR (1982) On the instability of K+ influx in erythrocytes of rainbow trout, Salmo gairdneri, and the role of catecholamine hormones in maintaining in vivo influx activity. J Exp Biol 101:93–104

    PubMed  CAS  Google Scholar 

  • Boustany AM, Marcinek D, Keen J, Dewar H, Block BA (2001) Movements and temperature preferences of Atlantic bluefin tuna (Thunnus thynnus) off North Carolina: a comparison of acoustic, archival, and pop-up satellite tags. In: Sibert J, Neilson J (eds) Methods and technologies in fish biology and fisheries, vol 1. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 89–108

    Google Scholar 

  • Brauner CJ, Randall DJ (1996) The interaction between oxygen and carbon dioxide movements in fishes. Comp Biochem Physiol 113A:83–90

    Article  Google Scholar 

  • Brill RW (1994) A review of temperature and O2 tolerance studies of tunas pertinent to fisheries oceanography, movement models and stock assessments. Fish Oceanogr 3:204–216

    Google Scholar 

  • Brill RW, Bushnell PG (1991) Effects of open- and closed-system temperature changes on blood oxygen dissociation curves of skipjack tuna, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares. Can J Zool 69:1814–1821

    Google Scholar 

  • Brill RW, Bushnell PG (2001) The cardiovascular system of tunas. In: Block BA, Stevens ED (eds) Fish physiology, vol 19. Tuna—physiology, ecology and evolution. Academic Press, San Diego, pp 79–120

    Google Scholar 

  • Brill R, Lutcavage M (2001) Understanding environmental influences on movements and depth distribution of tunas and billfish can significantly improve stock assessments. In: Sedberry GR (eds) Island in the stream: oceanography and fisheries of the Charleston Bump. American Fisheries Society, Symposium 25, Bethesda, Maryland, pp 179–198

    Google Scholar 

  • Brill RW, Bushnell PG, Jones DR, Shimazu M (1992) Effects of acute temperature change, in vivo and in vitro, on the acid–base status of blood from yellowfin tuna (Thunnus albacares). Can J Zool 70:654–662

    Google Scholar 

  • Brill RW, Cousins KL, Jones DR, Bushnell PG, Steffensen JF (1998) Blood volume, plasma volume and circulation time in a high-energy-demand teleost, the yellowfin tuna (Thunnus albacares). J Exp Biol 201:647–654

    PubMed  Google Scholar 

  • Brill R, Lutcavage M, Metzger G, Bushnell P, Arndt M, Lucy J, Watson C (2002) Horizontal and vertical movements of juvenile bluefin tuna (Thunnus thynnus) in the western north Atlantic determined using ultrasonic telemetry. Fish Bull US 100:155–167

    Google Scholar 

  • Brittain T (1987) The Root effect. Comp Biochem Physiol B 88:473–481

    Article  Google Scholar 

  • Bushnell PG, Brill RW (1992) Oxygen transport and cardiovascular responses in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) exposed to acute hypoxia. J Comp Physiol 162:131–143

    CAS  Google Scholar 

  • Bushnell PG, Jones DR (1994) Cardiovascular and respiratory physiology of tuna: adaptations for support of exceptionally high metabolic rates. Environ Biol Fishes 40:303–318

    Article  Google Scholar 

  • Bushnell PG, Brill RW, Bourke RE (1990) Cardiorespiratory responses of skipjack tuna Katsuwonus pelamis; yellowfin tuna, Thunnus albacares; and bigeye tuna, T. obesus, to acute reductions in ambient oxygen. Can J Zool 68:1857–1865

    Article  Google Scholar 

  • Cameron JN (1971) Rapid method for determination of total carbon dioxide in small blood samples. J Appl Physiol 31:632–634

    PubMed  CAS  Google Scholar 

  • Carey FG (1973) Fishes with warm bodies. Sci Am 228:36–44

    Article  PubMed  CAS  Google Scholar 

  • Carey FG, Gibson QH (1977) Reverse temperature dependence of tuna hemoglobin oxygenation. Biochem Biophysic Res Commun 78:1376–1382

    Article  CAS  Google Scholar 

  • Carey FG, Gibson QH (1983) Heat and oxygen exchange in the rete mirable of the bluefin tuna, Thunnus thynnus. Comp Biochem Physiol 74A:333–342

    Article  Google Scholar 

  • Carey FG, Teal JM (1966) Heat conservation in tuna fish muscle. Proc Natl Acad Sci U S A 56:1461–1469

    Article  Google Scholar 

  • Carey FG, Kanwisher JW, Stevens ED (1984) Bluefin tuna warm their viscera during digestion. J Exp Biol 109:1–20

    Google Scholar 

  • Carey FG, Casey JG, Pratt HL, Urquhart D, McCosker JE (1985) Temperature, heat production and heat exchange in lamnid sharks. Mem South Cal Acad Sci 9:92–108

    Google Scholar 

  • Cayré P, Marsac F (1993) Modeling the yellowfin tuna (Thunnus albacares) vertical distribution using sonic tagging results and local environmental parameters. Aquat Living Resour 6:1–14

    Google Scholar 

  • Cech JJ, Jr, Laurs RM, Graham JB (1984) Temperature-induced changes in blood gas equilibria in the albacore, Thunnus alalunga, a warm-bodied tuna. J Exp Biol 109:21–34

    Google Scholar 

  • Dacie JV, Lewis SN (1984) Practical hematology. 5th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Dalessio PM, DiMichele L, Powers D (1991) Adrenergic effects on the oxygen affinity and pH of cultured erythrocytes and blood of the mummichog, Fundulus heteroclitus. Physiol Zool 64:1407–1425

    CAS  Google Scholar 

  • Gallardo Romero M, Guizouarn H, Pellissier B, Garcia-Romeu F, Motais R (1996) The erythrocyte Na+/H+ exchangers of eel (Anguilla anguilla) and rainbow trout (Onchorynchus mykiss): a comparative study. J Exp Biol 199:415–426

    Google Scholar 

  • Ganong WF (1973) Review of medical physiology. Lange Medical Publications, Los Altos California

    Google Scholar 

  • Gilmour KM, Didyk NE, Reid SG, Perry SF (1994) Down-regulation of red blood cell-adrenoreceptors in response to chronic elevation of plasma catecholamine levels in the rainbow trout. J Exp Biol 186:309–314

    PubMed  CAS  Google Scholar 

  • Godsil HC, Byers RD (1944) A systematic study of the Pacific tunas. Calif Dept Fish Game Fishery Bull 60:1–131

    Google Scholar 

  • Gooding RG, Neill WH, Dizon AE (1981) Respiration rates and low-oxygen tolerance limits in skipjack tuna, Katsuwonus pelamis. Fish Bull US 79:31–47

    Google Scholar 

  • Graham JB, Dickson KA (2001) Anatomical and physiological specializations for endothermy. In: Block BA, Stevens ED (eds) Fish physiology, vol 19. Tuna—physiology, ecology and evolution. Academic Press, San Diego, pp 121–166

    Google Scholar 

  • Graham JB, Dickson KA (2004) Tuna comparative physiology. J Exp Biol 207:4015– 4024

    Article  PubMed  Google Scholar 

  • Grigg GC (1969) Oxygen equilibrium curve of the blood of the brown bullhead, Ictacurus nebulosus. Comp Biochem Physiol 29:1203–1223

    Google Scholar 

  • Gunn J, Block BA (2001) Advances in acoustic, archival, and satellite tagging of tunas. In: Block BA, Stevens ED (eds) Fish physiology, vol 19, Tuna—physiology, ecology and evolution. Academic Press, San Diego, pp 167–224

    Google Scholar 

  • Hanamoto E (1987) Effect of oceanographic environment on bigeye tuna distribution. Bull Japan Soc Fish Oceanogr 51:203 –216

    Google Scholar 

  • Hochachka P, Somero G (1984) Biochemical adaptation. Princeton University Press, Princeton New Jersey

    Google Scholar 

  • Holland K, Brill R, Chang R, Sibert J, Fournier D (1992) Physiological and behavioral thermoregulation in bigeye tuna (Thunnus obesus). Nature 358:410–412

    Article  PubMed  CAS  Google Scholar 

  • Ikeda-Saito M, Yonetani T, Gibson QH (1983) Oxygen equilibrium studies on hemoglobin from the bluefin tuna (Thunnus thynnus). J Mol Biol 168:673–686

    Article  PubMed  CAS  Google Scholar 

  • Ingham MC, Cook SK, Hausknecth KA (1977) Oxygen characteristics and skipjack tuna distribution in the southeastern tropical Atlantic. Fish Bull US 75:857–865

    Google Scholar 

  • Jensen FB, Nikinmaa M, Weber RE (1993) Environmental perturbations of oxygen transport in teleost fishes: causes, consequences and compensations. In: Rankin JC, Jensen FB (eds) Fish ecophysiology. Chapman & Hall, London, pp 161–179

    Google Scholar 

  • Jensen FB, Fago A, Weber RW (1998) Hemoglobin structure and function. In: Perry SF, Tufts BL (eds) Fish physiology, vol 17. Academic Press, San Diego, pp 1–40

    Google Scholar 

  • Jones DR, Brill RW, Mense DC (1986) The influence of blood gas properties on gas tensions and pH of ventral and dorsal aortic blood in free-swimming tuna, Euthynnus affinis. J Exp Biol 120:201–213

    Google Scholar 

  • Kaloyianni M, Rasidaki A (1996) Adrenergic responses of R. ridibunda red cells. J Exp Zool 276:175–185

    Article  PubMed  CAS  Google Scholar 

  • Korsmeyer KE, Lai NC, Shadwick RE, Graham JB (1997) Oxygen transport and cardiovascular responses to exercise in the yellowfin tuna, Thunnus albacares. J Exp Biol 200:1987–1997

    PubMed  CAS  Google Scholar 

  • Larsen C, Male H, Weber RE (2003) ATP-induced reverse temperature effect in isohemoglobins from the endothermic porbeagle shark (Lamna nasus). J Biol Chem 278:30741–30747

    Article  PubMed  CAS  Google Scholar 

  • Lowe T, Brill R, Cousins K (2000) Blood O2-binding characteristics of bigeye tuna (Thunnus obesus), a high-energy-demand teleost that is tolerant of low ambient O2. Mar Biol 136:1087–1098

    Article  Google Scholar 

  • Lutcavage ME, Brill RW, Skomal GB, Chase BC, Goldstein JL, Tutein J (2000) Tracking adult northern bluefin tuna (Thunnus thynnus) in the northwestern Atlantic using ultrasonic telemetry. Mar Biol 137:347–358

    Article  Google Scholar 

  • Lykkeboe G, Weber RE (1978) Changes in the respiratory properties of the blood in the carp, Cyrprinus carpio, induced by diurnal variation in ambient oxygen. J Comp Physiol B 128:117–125

    Article  Google Scholar 

  • Mathieu-Costello O, Agey PJ, Logermann RB, Brill RW, Hochacka PW (1992) Capillary–fiber geometrical relationships in tuna red muscle. Can J Zool 70:1281–1229

    Article  Google Scholar 

  • Mohri ME, Hanamoto E, Takeuchi S (1996) Optimum water temperatures for bigeye tuna in the Indian Ocean as seen from tuna longline catches. Nippon Suisan Gakk 63:761–764

    Google Scholar 

  • Neill WH, Chang RKC, Dizon AE (1976) Magnitude and ecological implications of thermal inertia in skipjack tuna, Katsuwonus pelamis (Linnaeus). Environ Biol Fishes 1:61–80

    Article  Google Scholar 

  • Nikinmaa M (1990) Vertebrate red blood cells. Springer, New York

    Google Scholar 

  • Oswald RL (1978) Injection anaesthesia for experimental studies in fish. Comp Biochem Physiol C 60:19–26

    Article  PubMed  CAS  Google Scholar 

  • Perry SF, Daxboeck C, Emmett B, Hochachka PW, Brill RW (1985) Effects of temperature change on acid–base regulation in skipjack tuna (Katsuwonus pelamis) blood. Comp Biochem Physiol A 81:49–53

    Article  PubMed  CAS  Google Scholar 

  • Powers DA (1980) Molecular ecology of teleost fish hemoglobins: strategies for adapting to changing environments. Am Zool 19:211–224

    Google Scholar 

  • Powers DA (1985) Molecular and cellular adaptations of fish hemoglobin–oxygen affinity to environmental changes. In: Lamy J, Truchot J-P, Gilles R (eds) Respiratory pigments in animals. Springer, Berlin, pp 98–124

    Google Scholar 

  • Powers DA, Martin JP, Garlick RL, Fyhn HJ (1979) The effect of temperature on the oxygen equilibria of fish hemoglobins in relation to thermal variability. Comp Biochem Physiol A 62:87–94

    Article  Google Scholar 

  • Roig T, Sanchez J, Tort L, Altimiras J, Bermudez J (1997) Adrenergic stimulation of sea bream (Sparus aurata) red blood cells in normoxia and anoxia: effects on metabolism and on the oxygen affinity of haemoglobin. J Exp Biol 200:953–961

    PubMed  CAS  Google Scholar 

  • Rossi-Fanelli A, Antonini E (1960) Oxygen equilibrium of hemoglobin from Thunnus thynnus. Nature 186:895–896

    Article  PubMed  CAS  Google Scholar 

  • Sharp GD (1978) Behavioral and physiological properties of tunas and their effects on vulnerability to fishing gear. In: Sharp GD, Dizon AE (eds) The physiological ecology of tunas. Academic Press, New York, pp 397–449

    Google Scholar 

  • Stokesbudy MJW, Teo SLH, Siez A, O’Dor R, Block BA (2004) Movements of Atlantic bluefin tuna (Thunnus thynnus) as determined by satellite tagging experiments initiated off New England. Can J Fish Aquat Sci 61:1976–1987

    Article  Google Scholar 

  • Sund PN, Blackburn B, Williams F (1981) Tunas and their environment in the Pacific Ocean: a review. Oceanogr Mar Biol Ann Rev 19:443–512

    Google Scholar 

  • Truchot J-P (1987) Comparative aspects of extracellular acid–base balance. Springer, New York

    Google Scholar 

  • Tucker VA (1967) Method for oxygen content and dissociation curves on microliter blood samples. J Appl Physiol 23:410–414

    PubMed  CAS  Google Scholar 

  • Wells RMG, McIntyre RH, Morgan AK, Davie PS (1986) Physiological stress response in big gamefish after capture: observations on plasma chemistry and blood factors. Comp Physiol Biochem A 84:565 – 571

    Article  CAS  Google Scholar 

  • Wood SC (1980) Adaptations of red blood cell function to hypoxia and temperature in ectothermic vertebrates. Am Zool 20:163–172

    CAS  Google Scholar 

  • Yang T-H, Lai NC, Graham JB, Somero GN (1992) Respiratory, blood, and heart enzymatic adaptations of Sebastolobus alascanus (Scorpaenidae;Teleostei) to the oxygen minimum zone: a comparative study. Biol Bull Mar Biol Lab Woods Hole 183:490–499

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Marine Fisheries Service (Northeast Fisheries Science Center), a partial IUSB faculty research grant (PGB), and NOAA Grant NA04NMF4550391 to the Large Pelagics Research Center–University of New Hampshire. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its sub-agencies. The experiments, animal maintenance, anesthesia, and animal handling procedures described herein were approved by the College and William and Mary Institutional Animal Care and Use Committee and comply with all current applicable laws of the United States of America. The authors gratefully acknowledge Jack Stallings, Molly Lutcavage, John Logan, Roy Pemberton, and Andrij Horodysky for collecting live tunas and for their help during the experiments. We especially thank Mark Luckenbach, Reade Bonniwell, and the staff of the Virginia Institute of Marine Science Eastern Shore Laboratory for their continuing and genuine hospitality and for providing both fish holding and laboratory facilities. This is contribution 2761 from the Virginia Institute of Marine Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Brill.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brill, R.W., Bushnell, P.G. Effects of open- and closed-system temperature changes on blood O2-binding characteristics of Atlantic bluefin tuna (Thunnus thynnus). Fish Physiol Biochem 32, 283–294 (2006). https://doi.org/10.1007/s10695-006-9104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-006-9104-7

Keywords

  • Cardiorespiratory
  • Fish
  • Hemoglobin
  • Hypoxia
  • Pelagic
  • Metabolic rate
  • Oxygen affinity
  • Scrombridae