Skip to main content
Log in

Digestive enzyme activity during early larval development of the Cuban gar Atractosteus tristoechus

  • Original Paper
  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The ontogenesis of digestive enzymes (proteases, amylases, lipases, and phosphatases) in Cuban gar Atractosteus tristoechus was determined in larvae between 5 and 18 days after hatching (DAH). Variations in specific activities of most enzymes were related to the transition from endogenous to exogenous feeding and to the transition from the larval to the juvenile stage. Alkaline protease activity was not detected until 8 DAH in contrast to acid protease activity, which was quantifiable at 5 DAH. Acid protease activity was consistently higher than alkaline protease activity, indicating the presence of a functional stomach in the early stages of larval development. The acid protease activities of larvae and adults were compared by means of zymogram analysis. Four acid protease bands were found in adults (two more than in larvae). This result is the first time that more than one band of acid proteolytic activity has been found in Lepisosteidae. High lipase activity indicated the importance of lipid utilization, particularly during yolk-sac absorption. In contrast to the other enzymes studied, amylase activity was consistently low, probably due to the strictly carnivorous diet of gar larvae and their low capacity for carbohydrate digestion. High activities of aminopeptidase and acid and alkaline phosphatases suggest intestinal absorption. This result, together with the existence of a short gut and a lower proteolytic activity in the intestine than in the stomach, suggest that most of the proteolytic activity takes place in the stomach, while the primary function of the intestine is nutrient uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alarcón FJ (1997) Procesos digestivos en peces marinos: Caracterización y aplicaciones prácticas. Ph.D thesis, Universidad de Almería, Spain

  • Alvarez CA (2003) Actividad enzimática digestiva y evaluación de dietas para el destete de larvas de la cabrilla arenera Paralabrax maculatofasciatus(Percoidei: Serranidae). PhD thesis. Instituto Politécnico Nacional, Baja California Sur, Mexico

  • Anson ML (1938) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 22:79–89

    Article  CAS  PubMed  Google Scholar 

  • Aquilera CJ (1999) Bases fisiológicas del desarrollo de larvas de catán (Atractosteus spatula) y perspectivas para su cultivo. PhD thesis, Universidad Autónoma de Nuevo León, Mexico

  • Baglole CJ, Goff GP, Wright GM (1998) Distribution and ontogeny of digestive enzymes in larval yellowtail and winter flounder. J Fish Biol 53:767–784

    Article  CAS  Google Scholar 

  • Baragi V, Lovell RT (1986) Digestive enzyme activities in striped bass from first feeding through larva development. Trans Am Fish Soc 115:478–484

    Article  CAS  Google Scholar 

  • Bernfeld P (1951) Amylases (alpha) and (beta). In: Colowick S, Kaplan N (eds) Methods in enzymology, vol 1. Academic Press, New York, pp 149–158

    Chapter  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brogdon WG, Dickinson CM (1983) A microassay system for measuring esterase activity and protein concentration in small and high pressure liquid chromatography eluted fractions. Anal Biochem 131:499–503

    Article  PubMed  CAS  Google Scholar 

  • Buddington R (1985) Digestive secretions of lake sturgeon, Acipenser fulvencens, during early development. J Fish Biol 26:715–723

    Article  Google Scholar 

  • Buddington RK, Dorshov SI (1986) Development of digestive secretions in white sturgeon juveniles (Acipenser trasmontanus). Comp Biochem Physiol 83A:233–238

    Article  CAS  Google Scholar 

  • Cahu CL, Zambonino Infante JL (1994) Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comp Biochem Physiol 109A:213–222

    Article  Google Scholar 

  • Cahu C, Rønnestad I, Grangier V, Zambonino Infante JL (2004) Expression and activities of pancreatic enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact and hydrolyzed dietary protein; involvement of cholecystokinin. Aquaculture 238:295–308

    Article  CAS  Google Scholar 

  • Chakrabarti R, Rathore RM, Kumar S (2006) Study of digestive enzyme activities and partial characterization of digestive proteases in a freshwater teleost, Labeo rohita, during early ontogeny. Aquacult Nutr 12:35–43

    Article  CAS  Google Scholar 

  • Cousin JCB, Baudin-Laurencin F, Gabaudan J (1987) Ontogeny of enzymatic activities in fed and fasting turbot, Scophthalmus maximus L. J Fish Biol 30:15–33

    Article  CAS  Google Scholar 

  • Dean B (1985) The early development of gar-pike and sturgeon. J Morphol 11:1–55

    Article  Google Scholar 

  • Díaz M, Moyano FJ, García-Carreño FL, Alarcón FJ, Sarasquete MC (1997) Substrate-SDS-PAGE determination of protease activity through larval development in sea bream. Aquacult Int 5:461–471

    Article  Google Scholar 

  • Divakaran S, Kim BG, Ostrowski AC (1999) Digestive enzymes present in Pacific threadfin Polydactylus sexfilis (Bloch and Schneider 1801) and bluefin trevally Caranx melampygus (Cuvier 1833). Aquacult Res 30:781–787

    Article  Google Scholar 

  • Eusebio PS, Toledo JD, Mamauag REP, Bernas MJG (2004) Digestive enzyme activity in developing grouper (Epinephelus coioides) larvae. In: Rimmer MA, McBride S, Williams KC (eds) Advances in grouper aquaculture, CIAR Monograph

  • Fountoulaki E, Alexis MN, Nengas I, Venou B (2005) Effect of diet composition on nutrient digestibility and digestive enzyme levels of gilthead sea bream (Sparus aurata L.). Aquacult Res 36:1243–1251

    Google Scholar 

  • García-Carreño FL, Dimes LE, Haard NF (1993) Substrate gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal Biochem 214:65–69

    Article  PubMed  Google Scholar 

  • García-Ortega A, Verreth J, Segner H (2000) Post-prandial protease activity in the digestive tract of African catfish Clarias gariepinus larvae fed decapsulated cysts of Artemia. Fish Physiol Biochem 22:237–244

    Article  Google Scholar 

  • Gawlicka A, The SJ, Hung SSO, Hinton DE, de la Noue J (1995). Histological and histochemical changes in the digestive tract of white sturgeon larvae during ontogeny. Fish Physiol Biochem 14:357–371

    Article  CAS  Google Scholar 

  • Gildberg A, Olsenand RL, Bjarnason J (1990) Catalytic properties and chemical composition of pepsins from Atlantic cod (Gadus morhua). Comp Biochem Physiol 96B:323–330

    CAS  Google Scholar 

  • Govoni JJ, Boehlert GW, Watanabe Y (1986) The physiology of digestion in fish larvae. Environ Biol Fish 16:59–77

    Article  Google Scholar 

  • Horn MH, Neighbors MA, Murray SN (1986) Herbivore responses to a seasonally fluctuating food supply: growth potential of two temperate intertidal fishes based on the protein and energy assimilated from their macroalgal diets. J Exp Mar Biol Ecol 103:217–234

    Article  Google Scholar 

  • Kapoor BG, Smit H, Verighina IA (1975) The alimentary canal and digestion in teleosts. Adv Mar Biol 13:109–239

    Article  CAS  Google Scholar 

  • Kim BG, Brown CL (1995) Hormonal manipulation of digestive enzyme ontogeny in marine larval fishes – effects on digestive enzymes. Report no. 28, United States–Japan Cooperative Program in Natural Resources, USA/Japan, pp 47–55

  • Kurokawa T, Shiraishi M, Suzuki T (1998) Quantification of exogenous protease derived from zooplankton in the intestine of Japanese sardine (Sardinops melanotictus) larvae. Aquaculture 161:491–499

    Article  CAS  Google Scholar 

  • Lauff M, Hofer R (1984) Proteolytic enzymes in fish development and the importance of dietary enzymes. Aquaculture 37:335–346

    Article  CAS  Google Scholar 

  • León R, Aguiar R, Hernández I (1978) Estudio sobre la biología y el cultivo artificial del manjuarí (Atractosteus tristoechus) Blosh y Schneider. Dirección Ramal de Acuicultura, Investigación no. 85

  • Letelier ME, Repetto Y, Aldunate J, Morello A (1985) Acid and alkaline phosphatase activity in Trypanosoma cruzi epimastigotes. Comp Biochem Physiol 81B:47–51

    CAS  Google Scholar 

  • Lundstedt LM, Bibiano JF, Moraes G (2004) Digestive enzymes and metabolic profile of Pseudoplatystoma corruscans (Teleostei: Siluriformes) in response to diet composition. Comp Biochem Physiol 137B:331–339

    CAS  Google Scholar 

  • Martínez I, Moyano FJ, Fernández C, Yúfera M (1999) Digestive enzyme activity during larval development of the Senegal sole (Solea senegalensis). Fish Physiol Biochem 21:317–323

    Article  Google Scholar 

  • Márquez G (2002) Biología y tecnología para el cultivo del pejelagarto Atractosteus tropicus en el sureste de México. In: IV Reunión Nacional de Redes de Investigación en Acuacultura. V Reproducción y genética, pp 265–268

  • Mendoza R, Aguilera C, Rodríguez G, Gonzalez M, Castro R (2002a) Morphophysiological studies on alligator gar (Atractosteus spatula) larval development as a basis for their culture and repopulation of their natural habitats. Rev Fish Biol Fish 12:133–142

    Google Scholar 

  • Mendoza R, Aguilera C, Montemayor J, Revol A, Holt J (2002b) Studies on the physiology of Atractosteus spatula larval development and its applications to early weaning onto artificial diets. In: Cruz-Suárez LE, Ricque-Marie D, Tapia-Salazar M, Gaxiola-Cortés MG, Simoes N (eds) Avances en Nutrición Acuícola VI. Memorias del Simposium Internacional de Nutrición Acuícola

  • Moyano FJ, Sarasquete MC (1993) A screening on some digestive enzyme activities of gilthead seabream (Sparus aurata) larvae. In: World Aquaculture ’93. Special Publication No. 19. Torremolinos, Spain

  • Moyano FJ, Díaz M, Alarcón FJ, Sarasquete MC (1996) Characterization of digestive enzymes activity during larval development of gilthead seabream (Sparus aurata). Fish Physiol Biochem 15:121–130

    Article  CAS  Google Scholar 

  • Moyano FJ, Barros AM, Prieto A, Cañavate JP, Cárdenas S (2005) Evaluación de la ontogenia de enzimas digestivas en larvas de hurta, Pagrus auriga (Pisces: Sparidae). Aqua 22:39–47

    Google Scholar 

  • Munilla-Morán R, Stark JR, Barbour A (1990) The role of exogenous enzymes in digestion in cultured turbot larvae (Scophthalmus maximus L.). Aquaculture 88:337–350

    Article  Google Scholar 

  • Oozeki Y, Bailey KM (1995) Ontogenetic development of digestive enzyme activities in larval walleye pollock, Theragra chalcogramma. Mar Biol 122:177–186

    CAS  Google Scholar 

  • Ozkizilcik S, Chu FE, Place A (1996) Ontogenetic changes of lipolytic enzymes in striped bass (Morone saxatilis). Comp Biochem Physiol 113B:631–637

    CAS  Google Scholar 

  • Pérez E, Matamoros Y, Ellis S (1999) Taller para el análisis de la conservación y manejo planificado de una selección de especies cubanas (CAMP). Sección IV, Peces, Havana

  • Perez-Casanova JC, Murray HM, Gallant JW, Ross NW, Douglas SE, Johnson SC (2004) Bile salt-activated lipase expression during larval development in the haddock (Melanogrammus aeglefinus). Aquaculture 235:601–617

    Article  CAS  Google Scholar 

  • Segner H, Storch V, Reinecke M, Kloas W, Hanke W (1994) The development of functional digestive and metabolic organs in turbot, Scophthalmus maximus. Mar Biol 119:471–486

    Article  Google Scholar 

  • Segner H, Storch V, Reinecke M, Kloas W, Hanke W (1995) A tabular overview of organogenesis in larval turbot (Scophthalmus maximus). ICES Mar Sci Symp 201:35–39

    Google Scholar 

  • Simon TP, Wallus R (1989) Contributions to the early life histories of gar (Actynopterygii: Lepisosteidae) in the Ohio and Tennessee river basins with emphasis on larval development. Trans Ky. Acad Sci 50:59–74

    Google Scholar 

  • Squires EJ, Haard NF, Feltham LAW (1986) Gastric proteases of the Greenland cod, Gadus ogac. I. Isolation and kinetic properties. Biochem Cell Biol 64:205–214

    Article  PubMed  CAS  Google Scholar 

  • Ueberschär B (1993). Measurement of proteolytic enzyme activity: significance and application in larval fish research. In: Walther BT, Fyhn HJ (eds) Physiological and biochemical aspects of fish development. University of Bergen, Norway, pp 233–237

    Google Scholar 

  • Walter HE (1984) Proteinases: methods with haemoglobin, casein and azocoll as substrates. In: Bergmeyer J, Grad M (eds) Methods of enzymatic analysis, vol 5. Verlag Chemie, Weinheim, Germany, pp 270–277

    Google Scholar 

  • Zambonino Infante JL, Cahu CL (1994). Development and response to a diet change of some digestive enzymes in sea bass (Dicentrarchus labrax) larvae. Fish Physiol Biochem 12:399– 408

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Centro de Investigaciones Marinas (CIM) and Centro de Reproducción de la Ictiofauna Indígena from Cuba, the Iberoamerican organization CYTED (Red II-C “Nutrición en Acuicultura”) and CONACyT-SEMARNAT-2002-CO1–0882 from Mexico. The authors wish to thank Dr. J. Canabal for his excellent technical assistance during the experiment and Gabriel Márquez M.Sc. (Universidad Juárez Autónoma de Tabasco, México) for his dependable and absolute aid. Special thanks to Dr. Allyse Ferrara (Nicholls State University, USA) and Melvis Rojas fortheEnglish corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. García-Galano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comabella, Y., Mendoza, R., Aguilera, C. et al. Digestive enzyme activity during early larval development of the Cuban gar Atractosteus tristoechus . Fish Physiol Biochem 32, 147–157 (2006). https://doi.org/10.1007/s10695-006-0007-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-006-0007-4

Keywords

Navigation