Skip to main content

Advertisement

Log in

Electrothermal Characterization and Modeling of Lithium-Ion Pouch Cells in Thermal Runaway

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Electronic applications using lithium-ion batteries are increasingly operated under adverse conditions such as high operating currents and elevated environmental temperatures. Prolonged operation in these adverse conditions induces thermal stresses which can initiate thermal runaway (battery fires). Understanding thermal and performance envelopes for cells is crucial for battery systems’ safe operation. To explore the performance and thermal envelope for safe operation, there is a need for computational tools to predict a cell’s thermal and electrical behavior in any given environment. This paper introduces a model which predicts temperature and voltage profiles of a cell based on operating conditions (current, environmental temperature, etc.). The technique is developed by (1) establishing a 2-resistor-capacitor (2-RC) equivalent circuit model (ECM), (2) parameterizing the ECM in terms of circuit, degradation, and Arrhenius parameters, (3) calibrating parameters through high-pulse-power-characterization (HPPC) and time-constraint insulated-high-pulse-power (TC-IHPP) tests, (4) validating the ECM through discharging tests, and (5) exploring simulated scenarios and examining the ECM’s predictions. Validation results show that with calibrated parameters, the ECM predicts a cell’s electrical and temperature behavior reasonably accurately in a thermal environment and thermal runaway under extreme operating conditions. A degradation model predicts that a cell undergoing thermal runaway loses full capacity before failure initiation. Results show that irreversible and reactive heat are driving factors for a cell’s heating during cycling at low and high temperatures, respectively. Thus, the ECM was simplified by removing additional parameters, which minimized the computational and experimental work required to set up the model. The simplified ECM (SECM) is suitable for scenarios where only average temperature is desired and can predict average temperature and voltage profiles as the original ECM. Finally, a theoretical model is provided to organize effects of electrical activity, thermal runaway kinetics, and environmental temperature on the likelihood for a cell to fail in thermal runaway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

Data Availability

Data sets generated in this research are available on request.

References

  1. Grandjean T, Barai A, Hosseinzadeh E, Guo Y, McGordon A, Marco J (2017) Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management. J Power Sources 359:215–225. https://doi.org/10.1016/j.jpowsour.2017.05.016

    Article  Google Scholar 

  2. Sazhin S, Khimchenko M, Tritenichenko Y, Lim H (2000) Performance of li-ion cells with new electrolytes conceived for low-temperature applications. J Power Sources 87(1–2):112–117. https://doi.org/10.1016/S0378-7753(99)00434-6

    Article  Google Scholar 

  3. Rodrigues M, Babu G, Gullapalli H, Kalaga K, Sayed F, Kato K, Joyner J, Ajayan P (2017) A materials perspective on li-ion batteries at extreme temperatures. Nat Energy 2(8):1–4. https://doi.org/10.1038/nenergy.2017.108

    Article  Google Scholar 

  4. Briscoe J, Raman N (2002) Lithium ion batteries: power sources for military aircraft. J Aerospace 111(1):859–862

    Google Scholar 

  5. Hill I, Andrukaitis E (2004) Lithium-ion polymer cells for military applications. J Power Sources 129(1):20–28. https://doi.org/10.1016/j.jpowsour.2003.11.017

    Article  Google Scholar 

  6. Rangarajan S, Barsukov Y, Mukherjee P (2019) In operando signature and quantification of lithium plating. J Mater Chem A 7(36):20683–20695. https://doi.org/10.1039/C9TA07314K

    Article  Google Scholar 

  7. von Lüders C, Keil J, Webersberger M, Jossen A (2019) Modeling of lithium plating and lithium stripping in lithium-ion batteries. J Power Sources 414:41–47. https://doi.org/10.1016/j.jpowsour.2018.12.084

    Article  Google Scholar 

  8. Petzl M, Kasper M, Danzer M (2015) Lithium plating in a commercial lithium-ion battery—a low-temperature aging study. J Power Sources 275:799–807. https://doi.org/10.1016/j.jpowsour.2014.11.065

    Article  Google Scholar 

  9. Xie Y, Wang S, Li R, Ren D, Yi M, Xu C, Han X, Lu L, Friess B, Offer G, Ouyang M (2022) Inhomogeneous degradation induced by lithium plating in a large-format lithium-ion battery. J Power Sources 542:231753. https://doi.org/10.1016/j.jpowsour.2022.231753

    Article  Google Scholar 

  10. Koleti U, Rajan A, Tan C, Moharana S, Dinh T, Marco J (2020) A study on the influence of lithium plating on battery degradation. Energies 13(13):3458. https://doi.org/10.3390/en13133458

    Article  Google Scholar 

  11. Zhang G, Wei X, Han G, Dai H, Zhu J, Wang X, Tang X, Ye J (2021) Lithium plating on the anode for lithium-ion batteries during long-term low temperature cycling. J Power Sources 484:229312. https://doi.org/10.1016/j.jpowsour.2020.229312

    Article  Google Scholar 

  12. Carnovale A, Li X (2020) A modeling and experimental study of capacity fade for lithium-ion batteries. Energy AI 2:100032. https://doi.org/10.1016/j.egyai.2020.100032

    Article  Google Scholar 

  13. Liu L, Park J, Lin X, Sastry A, Lu W (2014) A thermal-electrochemical model that gives spatial-dependent growth of solid electrolyte interphase in a li-ion battery. J Power Sources 268:482–490. https://doi.org/10.1016/j.jpowsour.2014.06.050

    Article  Google Scholar 

  14. Gao X, Zhou Y, Han D, Zhou J, Zhou D, Tang W, Goodenough J (2020) Thermodynamic understanding of li-dendrite formation. Joule 4(9):1864–1879. https://doi.org/10.1016/j.joule.2020.06.016

    Article  Google Scholar 

  15. Lyu P, Liu X, Qu J, Zhao J, Huo Y, Qu Z, Rao Z (2020) Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater 31:195–220. https://doi.org/10.1016/j.ensm.2020.06.042

    Article  Google Scholar 

  16. Wen J, Yu Y, Chen C (2012) A review on lithium-ion batteries safety issues: existing problems and possible solutions. Mater Express 2(3):197–212. https://doi.org/10.1166/mex.2012.1075

    Article  Google Scholar 

  17. Guo R, Shen W (2021) A review of equivalent circuit model based online state of power estimation for lithium-ion batteries in electric vehicles. Vehicles 4(1):1–29. https://doi.org/10.3390/vehicles4010001

    Article  Google Scholar 

  18. Jokar A, Rajabloo B, Désilets M, Lacroix M (2016) Review of simplified pseudo-two-dimensional models of lithium-ion batteries. J Power Sources 327:44–55. https://doi.org/10.1016/j.jpowsour.2016.07.036

    Article  Google Scholar 

  19. Lin C, Tang A (2016) Simplification and efficient simulation of electrochemical model for li-ion battery in EVS. Energy Procedia 104:68–73. https://doi.org/10.1016/j.egypro.2016.12.013

    Article  Google Scholar 

  20. Cai L, White R (2011) Mathematical modeling of a lithium ion battery with thermal effects in comsol inc. multiphysics (mp) software. J Power Sources 196(14):5985–5989. https://doi.org/10.1016/j.jpowsour.2011.03.017

    Article  Google Scholar 

  21. Tran M, Mevawalla A, Aziz A, Panchal S, Xie Y, Fowler M (2022) A review of lithium-ion battery thermal runaway modeling and diagnosis approaches. Processes 10(6):1192. https://doi.org/10.3390/pr10061192

    Article  Google Scholar 

  22. Tran M, Mathew M, Janhunen S, Panchal S, Raahemifar K, Fraser R, Fowler M (2021) A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters. J Energy Storage 43:103252. https://doi.org/10.1016/j.est.2021.103252

    Article  Google Scholar 

  23. Klink J, Grabow J, Orazov N, Benger R, Börger A, Tidblad A, Wenzl H, Beck H (2021) Thermal fault detection by changes in electrical behaviour in lithium-ion cells. J Power Sources 490:229572. https://doi.org/10.1016/j.jpowsour.2021.229572

    Article  Google Scholar 

  24. De Hoog J, Jaguemont J, Abdel-Monem M, Van Den Bossche P, Van Mierlo J, Omar N (2018) Combining an electrothermal and impedance aging model to investigate thermal degradation caused by fast charging. Energies 11(4):804. https://doi.org/10.3390/en11040804

    Article  Google Scholar 

  25. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224. https://doi.org/10.1016/j.jpowsour.2012.02.038

    Article  Google Scholar 

  26. Mao B, Huang P, Chen H, Wang Q, Sun J (2020) Self-heating reaction and thermal runaway criticality of the lithium ion battery. Int J Heat Mass Transf 149:119178. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119178

    Article  Google Scholar 

  27. Belt J (2010) Battery test manual for plug-in hybrid electric vehicles, Tech. rep., Idaho National Lab. https://doi.org/10.2172/991910

  28. Liang C, Jiang L, Wang Q, Sun J (2020) Dynamic heat generation of lini0.5co0.2mn0.3o2 half cell under cycling based on an in situ micro-calorimetry. Fire Technol 56(6):2387–2404. https://doi.org/10.1007/s10694-020-00956-4

    Article  Google Scholar 

  29. Zhang Q, Wei F, Zhang P, Dong R, Li J, Li P, Jia Q, Liu Y, Mao J, Shao G (2022) Research on the reversible and irreversible heat generation of lini1-x-ycoxmnyo2-based lithium-ion batteries. Fire Technol. https://doi.org/10.1007/s10694-022-01220-7

    Article  Google Scholar 

  30. Yang W, Zhou F, Liu Y, Chen X (2022) Preheating performance by heating film for the safe application of cylindrical lithium-ion battery at low temperature. Fire Technol. https://doi.org/10.1007/s10694-022-01251-0

    Article  Google Scholar 

  31. Farmann A, Sauer D (2018) Comparative study of reduced order equivalent circuit models for on-board state-of-available-power prediction of lithium-ion batteries in electric vehicles. Appl Energy 225:1102–1122. https://doi.org/10.1016/j.apenergy.2018.05.066

    Article  Google Scholar 

  32. Osara J, Ezekoye O, Marr K, Bryant M (2021) A methodology for analyzing aging and performance of lithium-ion batteries: consistent cycling application. J Energy Storage 42:103119. https://doi.org/10.1016/j.est.2021.103119

    Article  Google Scholar 

  33. Nejad S, Gladwin D, Stone D (2021) A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states. J Power Sources 316:183–196. https://doi.org/10.1016/j.jpowsour.2016.03.042

    Article  Google Scholar 

  34. Hua X, Zhang C, Offer G (2021) Finding a better fit for lithium ion batteries: a simple, novel, load dependent, modified equivalent circuit model and parameterization method. J Power Sources 484:229117. https://doi.org/10.1016/j.jpowsour.2020.229117

    Article  Google Scholar 

  35. Zhang L, Peng H, Ning Z, Mu Z, Sun C (2017) Comparative research on RC equivalent circuit models for lithium-ion batteries of electric vehicles. Appl Sci 7(10):1002. https://doi.org/10.3390/app7101002

    Article  Google Scholar 

  36. Bugryniec PJ, Davidson JN, Brown SF (2018) Assessment of thermal runaway in commercial lithium iron phosphate cells due to overheating in an oven test. Energy Procedia 151:74–78. https://doi.org/10.1016/j.egypro.2018.09.030

    Article  Google Scholar 

  37. Roth PE, Doughty DH, Pile DL (2007) Effects of separator breakdown on abuse response of 18650 li-ion cells. J Power Sources 174(2):579–583. https://doi.org/10.1016/j.jpowsour.2007.06.163

    Article  Google Scholar 

  38. Loveridge M, Remy G, Kourra N, Genieser R, Barai A, Lain M, Guo Y, Amor-Segan M, Williams M, Amietszajew T, Ellis M (2018) Looking deeper into the galaxy (note 7). Batteries 4(1):3. https://doi.org/10.3390/batteries4010003

    Article  Google Scholar 

  39. Feng X, He X, Ouyang M, Wang L, Lu L, Ren D, Santhanagopalan S (2018) A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries. J Electrochem Soc 165(16):A3748. https://doi.org/10.1149/2.0311816jes

    Article  Google Scholar 

  40. Schimpe M, von Kuepach M, Naumann M, Hesse H, Smith K, Jossen A (2018) Comprehensive modeling of temperature-dependent degradation mechanisms in lithium iron phosphate batteries. J Electrochem Soc 165(2):A181. https://doi.org/10.1149/2.1181714jes

    Article  Google Scholar 

  41. Smith K, Saxon A, Keyser M, Lundstrom B, Cao Z, Roc A (2017) Life prediction model for grid-connected li-ion battery energy storage system. In: 2017 American Control Conference (ACC), pp 4062–4068. https://doi.org/10.23919/ACC.2017.7963578

  42. Kucinskis G, Bozorgchenani M, Feinauer M, Kasper M, Wohlfahrt-Mehrens M, Waldmann T (2022) Arrhenius plots for li-ion battery ageing as a function of temperature, c-rate, and ageing state-an experimental study. J Power Sources 549:232129. https://doi.org/10.1016/j.jpowsour.2022.232129

    Article  Google Scholar 

  43. Sarasketa-Zabala E, Gandiaga I, Rodriguez-Martinez L, Villarreal I (2014) Calendar ageing analysis of a lifepo4/graphite cell with dynamic model validations: towards realistic lifetime predictions. J Power Sources 272:45–57. https://doi.org/10.1016/j.jpowsour.2014.08.051

    Article  Google Scholar 

  44. Grolleau S, Delaille A, Gualous H, Gyan P, Revel R, Bernard J, Redondo-Iglesias E, Peter J, Network S (2014) Calendar aging of commercial graphite/lifepo4 cell-predicting capacity fade under time dependent storage conditions. J Power Sources 255:450–458. https://doi.org/10.1016/j.jpowsour.2013.11.098

    Article  Google Scholar 

  45. Käbitz S, Gerschler J, Ecker M, Yurdagel Y, Emmermacher B, André D, Mitsch T, Sauer D (2013) Cycle and calendar life study of a graphite–lini1/3mn1/3co1/3o2 li-ion high energy system. part a: full cell characterization. J Power Sources 239:572–583. https://doi.org/10.1016/j.jpowsour.2013.03.045

    Article  Google Scholar 

  46. Collis D, Williams M (1959) Two-dimensional convection from heated wires at low Reynolds numbers. J Fluid Mech 6(3):357–384. https://doi.org/10.1017/S0022112059000696

    Article  MATH  Google Scholar 

  47. Torchio M, Magni L, Gopaluni R, Braatz R, Raimondo D (2016) Lionsimba: a matlab framework based on a finite volume model suitable for Li-ion battery design, simulation, and control. J Electrochem Soc 163(7):A1192. https://doi.org/10.1149/2.0291607jes

    Article  Google Scholar 

  48. Bazinski S, Wang X, Sangeorzan B, Guessous L (2016) Measuring and assessing the effective in-plane thermal conductivity of lithium iron phosphate pouch cells. Energy 114:1085–1092. https://doi.org/10.1016/j.energy.2016.08.087

    Article  Google Scholar 

  49. Bai F, Chen M, Song W, Feng Z, Li Y, Ding Y (2017) Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source. Appl Therm Eng 126:17–27. https://doi.org/10.1016/j.applthermaleng.2017.07.141

    Article  Google Scholar 

  50. Yang X, Tan S, Liu J (2016) Thermal management of li-ion battery with liquid metal. Energy Convers Manage 117:577–585. https://doi.org/10.1016/j.enconman.2016.03.054

    Article  Google Scholar 

  51. Fleckenstein M, Bohlen O, Roscher M, Bäker B (2011) Current density and state of charge inhomogeneities in Li-ion battery cells with lifepo4 as cathode material due to temperature gradients. J Power Sources 196(10):4769–4778. https://doi.org/10.1016/j.jpowsour.2011.01.043

    Article  Google Scholar 

  52. SAMSUNG SDI Co., Ltd., Safety data sheet, Tech. rep., SAMSUNG SDI Co., Ltd. (January 2016).

  53. Cabrera J, Moser R, Ezekoye O (2020) A modified directional flame thermometer: development, calibration, and uncertainty quantification. J Verif Valid Uncertain Quantif 5(1):011003. https://doi.org/10.1115/1.4046657

    Article  Google Scholar 

  54. Liu Z, Wang C, Guo X, Cheng S, Gao Y, Wang R, Sun Y, Yan P (2021) Thermal characteristics of ultrahigh power density lithium-ion battery. J Power Sources 506:230205. https://doi.org/10.1016/j.jpowsour.2021.230205

    Article  Google Scholar 

  55. Madani S, Schaltz E, Knudsen KS (2019) An electrical equivalent circuit model of a lithium titanate oxide battery. J Electrochem Soc 5(1):31. https://doi.org/10.3390/batteries5010031

    Article  Google Scholar 

  56. Hentunen A, Lehmuspelto T, Suomela J (2014) Time-domain parameter extraction method for thévenin-equivalent circuit battery models. IEEE Trans Energy Convers 29(3):558–566. https://doi.org/10.1109/TEC.2014.2318205

    Article  Google Scholar 

  57. Bai Y, Li L, Li Y, Chen G, Zhao H, Wang Z, Wu C, Ma H, Wang X, Cui H, Zhou J (2019) Reversible and irreversible heat generation of nca/si-c pouch cell during electrochemical energy-storage process. J Energy Chem 29:95–102. https://doi.org/10.1016/j.jechem.2018.02.016

    Article  Google Scholar 

  58. Xie Y, Li W, Yang Y, Feng F (2018) A novel resistance-based thermal model for lithium-ion batteries. Int J Energy Res 42(14):4481–4498. https://doi.org/10.1002/er.4193

    Article  Google Scholar 

  59. Qiu C, He G, Shi W, Zou M, Liu C (2019) The polarization characteristics of lithium-ion batteries under cyclic charge and discharge. J Solid State Electrochem 23(6):1887–1902. https://doi.org/10.1007/s10008-019-04282-w

    Article  Google Scholar 

  60. Chombo PV, Laoonual Y (2020) A review of safety strategies of a li-ion battery. J Power Sources 478:228649. https://doi.org/10.1016/j.jpowsour.2020.228649

    Article  Google Scholar 

  61. Spotnitz R, Franklin J (2003) Abuse behavior of high-power, lithium-ion cells. J Power Sources 113(1):81–100. https://doi.org/10.1016/S0378-7753(02)00488-3

    Article  Google Scholar 

  62. Shin J-S, Han C-H, Jung U-H, Lee S-I, Kim H-J, Kim K (2002) Effect of Li2Co3 additive on gas generation in lithium-ion batteries. J Power Sources 109(1):47–52. https://doi.org/10.1016/S0378-7753(02)00039-3

    Article  Google Scholar 

  63. Lin X, Khosravinia K, Hu X, Li J, Lu W (2021) Lithium plating mechanism, detection, and mitigation in lithium-ion batteries. Prog Energy Combust Sci 87:100953. https://doi.org/10.1016/j.pecs.2021.100953

    Article  Google Scholar 

  64. Noh H-J, Youn S, Yoon CS, Sun Y-K (2013) Comparison of the structural and electrochemical properties of layered li[nixcoymnz]o2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130. https://doi.org/10.1016/j.jpowsour.2013.01.063

    Article  Google Scholar 

  65. Ren D, Hsu H, Li R, Feng X, Guo D, Han X, Lu L, He X, Gao S, Hou J, Li Y (2019) A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries. ETransportation 2:100034. https://doi.org/10.1016/j.etran.2019.100034

    Article  Google Scholar 

  66. Takano K, Saito Y, Kanari K, Nozaki K, Kato K, Negishi A, Kato T (2002) Entropy change in lithium ion cells on charge and discharge. J Power Sources 32(3):251–258. https://doi.org/10.1023/A:1015547504167

    Article  Google Scholar 

  67. Viswanathan V, Choi D, Wang D, Xu W, Towne S, Williford R, Zhang J, Liu J, Yang Z (2010) Effect of entropy change of lithium intercalation in cathodes and anodes on li-ion battery thermal management. J Power Sources 195(11):3720–3729. https://doi.org/10.1016/j.jpowsour.2009.11.103

    Article  Google Scholar 

  68. Liu G, Ouyang M, Lu L, Li J, Han X (2014) Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. J Therm Anal Calorim 116(2):1001–1010. https://doi.org/10.1007/s10973-013-3599-9

    Article  Google Scholar 

  69. Chacko S, Chung Y (2012) Thermal modelling of li-ion polymer battery for electric vehicle drive cycles. J Power Sources 213:296–303. https://doi.org/10.1016/j.jpowsour.2012.04.015

    Article  Google Scholar 

  70. Yan H, Marr K, Ezekoye O (2022) Thermal runaway behavior of nickel-manganese-cobalt 18650 lithium-ion cells induced by internal and external heating failures. J Energy Storage 45:103640. https://doi.org/10.1016/j.est.2021.103640

    Article  Google Scholar 

  71. Quintiere J (2006) Fundamentals of fire phenomena

  72. Hu Z, He X, Restuccia F, Rein G (2020) Numerical study of self-heating ignition of a box of lithium-ion batteries during storage. Fire Technol 56(6):2603–2621. https://doi.org/10.1007/s10694-020-00998-8

    Article  Google Scholar 

  73. He X, Restuccia F, Zhang Y, Hu Z, Huang X, Fang J, Rein G (2020) Experimental study of self-heating ignition of lithium-ion batteries during storage: effect of the number of cells. Fire Technol 56(6):2649–2669. https://doi.org/10.1007/s10694-020-01011-y

    Article  Google Scholar 

Download references

Funding

To be completed after blind review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofodike A. Ezekoye.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical Approval

No animal or human testing took place in this research and ethical approval by the Institutional Review Board was not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Gajjar, P.D. & Ezekoye, O.A. Electrothermal Characterization and Modeling of Lithium-Ion Pouch Cells in Thermal Runaway. Fire Technol 59, 623–661 (2023). https://doi.org/10.1007/s10694-022-01349-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-022-01349-5

Keywords

Navigation