Skip to main content
Log in

Downward Flame Spread Rate Over PMMA Rods Under External Radiant Heating

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

There are multiple situations in which fires may occur at environmental conditions that are different than standard atmospheric conditions. Changes in ambient pressure, oxygen concentration, flow velocity, the presence of an external heat source or gravity may change the flammability and fire dynamics of materials. The objective of this work is to study the effect of external radiant heating on downward flame spread over cylindrical samples of polymethyl methacrylate (PMMA). In this work, experiments under normal gravity and atmospheric ambient conditions are conducted using a variable heat flux with peak values up to 13.2 kW/m2. A forced flow of air with a mass-mean velocity of 10 cm/s is used during the experiments. Flame spread rates were measured from video processing of the experiments at different conditions. Results show that the flame spread rate measured depends strongly on the amount of radiant heating provided. An analysis is presented to correlate the flame spread rate with the energy applied to the surface of the sample and the surface temperature. The results provide a baseline for comparison with future microgravity experiments to be performed by NASA as part of the SoFIE/MIST project aboard the International Space Station. It is expected that the results will provide insight for what is to be expected in different conditions relevant for fire safety in future space facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Abbreviations

PMMA:

Polymethyl methacrylate

MIST:

Material Ignition and Spread Test

SoFIE:

Solid Fuel Ignition and Extinction

b :

Constant values

c :

Specific heat

C :

Numerical constant

E :

Energy

f cyl :

Flame spread rate geometrical factor

g :

Gravity

Gr :

Grashof number

h :

Heat transfer coefficient

I 0 , I 1 :

Modified Bessel functions

k :

Thermal conductivity

L gx :

Characteristic gas phase thermal length parallel to the fuel surface

L gy :

Characteristic gas phase thermal length perpendicular to the fuel surface

Pr :

Prandtl number

r :

Sample radius

r h :

In-depth penetration of the thermal layer

R h :

Non-dimensional length

Re :

Reynolds number

T :

Temperature

t :

Time

TC:

Thermocouple

U f :

Forced flow velocity

V o :

Flame spread rate with no applied external heat flux

V f :

Flame spread rate

V f, eq :

Modified flame spread rate

α :

Thermal diffusivity

β :

Coefficient of thermal expansion

\(\dot{q}^{^{\prime\prime}}\) :

Heat flux

ε :

Emissivity

κ:

Absorption coefficient

σ :

Stefan-Blotzmann constant, 5.67 × 10−8 W/m2 K4

μ :

Dynamic viscosity

ϕ E :

Non-dimensional energy

ρ :

Density

arr :

Arrival of the flame to a given position

conv :

Convective

exp :

Experimental

ext :

External

f :

Flame

g :

Gas

max :

Maximum

o :

Initial

p :

Pyrolysis

rad :

Radiative

s :

Solid

T :

Total

th :

Theoretical

∞:

Ambient

References

  1. Fujita O (2015) Solid combustion research in microgravity as a basis of fire safety in space. Proc Combust Inst 35:2487–2502. https://doi.org/10.1016/j.proci.2014.08.010

    Article  Google Scholar 

  2. Fernandez-Pello AC (1977) Downward flame spread under the influence of externally applied thermal radiation. Combust Sci Technol 17:1–9. https://doi.org/10.1080/00102209708946807

    Article  Google Scholar 

  3. Saito, K., Williams, F.A., Wichman, I.S., Quintiere, J. Experimental study of upward turbulent flame spread on wood under external radiation. Chem Phys Process Combust Fall Tech Meet East States Sect (1985).

  4. Thomsen M, Huang X, Fernandez-Pello C, Urban DL, Ruff GA (2019) Concurrent flame spread over externally heated Nomex under mixed convection flow. Proc Combust Inst 37:3801–3808. https://doi.org/10.1016/j.proci.2018.05.055

    Article  Google Scholar 

  5. Osorio AF, Fernandez-Pello C, Urban DL, Ruff GA (2013) Limiting conditions for flame spread in fire resistant fabrics. Proc Combust Inst 34:2691–2697. https://doi.org/10.1016/j.proci.2012.07.053

    Article  Google Scholar 

  6. ASTM International. ASTM E1321, Standard test method for determining material ignition and flame spread properties (2013).

  7. ASTM International. ASTM E162, Standard test method for surface flammability of materials using a radiant heat energy source (1971).

  8. Quintiere JG (2006) Fundamentals of fire phenomena. John Wiley, New York

    Book  Google Scholar 

  9. Hirano T, Tazawa K (1978) A further study on effects of external thermal radiation on flame spread over paper. Combust Flame 32:95–105. https://doi.org/10.1016/0010-2180(78)90083-4

    Article  Google Scholar 

  10. Kashiwagi T, Newman DL (1976) Flame spread over an inclined thin fuel surface. Combust Flame 26:163–177. https://doi.org/10.1016/0010-2180(76)90069-9

    Article  Google Scholar 

  11. Kashiwagi T (1975) A study of flame spread over a porous material under external radiation fluxes. Symp Combust 15:255–265. https://doi.org/10.1016/S0082-0784(75)80302-X

    Article  Google Scholar 

  12. McAllister S, Fernandez-Pello C, Urban D, Ruff G (2010) The combined effect of pressure and oxygen concentration on piloted ignition of a solid combustible. Combust Flame 157:1753–1759. https://doi.org/10.1016/j.combustflame.2010.02.022

    Article  Google Scholar 

  13. Fereres S, Lautenberger C, Fernandez-Pello AC, Urban DL, Ruff GA (2012) Understanding ambient pressure effects on piloted ignition through numerical modeling. Combust Flame 159:3544–3553. https://doi.org/10.1016/j.combustflame.2012.08.006

    Article  Google Scholar 

  14. Long RT, Torero JL, Quintiere JG, Fernandez-Pello AC (2000) Scale and transport considerations on piloted ignition of PMMA. Fire Saf Sci 6:567–578. https://doi.org/10.3801/IAFSS.FSS.6-567

    Article  Google Scholar 

  15. Thomsen M, Murphy DC, Fernandez-Pello C, Urban DL, Ruff GA (2017) Flame spread limits (LOC) of fire resistant fabrics. Fire Saf J 91:259–265. https://doi.org/10.1016/j.firesaf.2017.03.072

    Article  Google Scholar 

  16. Miyamoto K, Huang X, Hashimoto N, Fujita O, Fernandez-Pello C (2016) Limiting oxygen concentration (LOC) of burning polyethylene insulated wires under external radiation. Fire Saf J 86:32–40. https://doi.org/10.1016/j.firesaf.2016.09.004

    Article  Google Scholar 

  17. Osorio AF, Mizutani K, Fernandez-Pello C, Fujita O (2015) Microgravity flammability limits of ETFE insulated wires exposed to external radiation. Proc Combust Inst 35:2683–2689. https://doi.org/10.1016/j.proci.2014.09.003

    Article  Google Scholar 

  18. Olson SL, Miller FJ (2009) Experimental comparison of opposed and concurrent flame spread in a forced convective microgravity environment. Proc Combust Inst 32:2445–2452. https://doi.org/10.1016/j.proci.2008.05.081

    Article  Google Scholar 

  19. Kashiwagi T, McGrattan KB, Olson SL, Fujita O, Kikuchi M, Ito K (1996) Effects of slow wind on localized radiative ignition and transition to flame spread in microgravity. Symp Combust 26:1345–1352. https://doi.org/10.1016/S0082-0784(96)80353-5

    Article  Google Scholar 

  20. Tu K, Quintiere JG (1991) Wall flame heights with external radiation. Fire Technol 27:195–203

    Article  Google Scholar 

  21. Fernandez-Pello AC (2004) Modelling flame spread as a flame induced solid ignition process. Fire Explos Hazards Proc fourth Int Semin 13–26

  22. Thomsen M, Fernandez-Pello C, Huang X, Olson S, Ferkul P (2020) Buoyancy effect on downward flame spread over PMMA cylinders. Fire Technol 56:247–269. https://doi.org/10.1007/s10694-019-00866-0

    Article  Google Scholar 

  23. Ferkul, P.V., Brown, L., Mroczka, C., Bhattacharjee, S., Fernandez-Pello, C., Miller, F.J., Olson, S.L., T’ien, J.S., Wichman, I.S. Solid fuel ignition and extinction (SoFIE) project on ISS. Denver, CO (2020).

  24. Link S, Huang X, Fernandez-Pello C, Olson S, Ferkul P (2018) The effect of gravity on flame spread over PMMA cylinders. Sci Rep 8:120. https://doi.org/10.1038/s41598-017-18398-4

    Article  Google Scholar 

  25. Miller CH, Gollner MJ (2015) Upward flame spread over discrete fuels. Fire Saf J 77:36–45. https://doi.org/10.1016/j.firesaf.2015.07.003

    Article  Google Scholar 

  26. Delichatsios MA, Panagiotou T, Kiley F (1991) The use of time to ignition data for characterizing the thermal inertia and the minimum (critical) heat flux for ignition or pyrolysis. Combust Flame 84:323–332. https://doi.org/10.1016/0010-2180(91)90009-Z

    Article  Google Scholar 

  27. Carmignani L (2021) Flame tracker: an image analysis program to measure flame characteristics. SoftwareX 15:100791. https://doi.org/10.1016/j.softx.2021.100791

    Article  Google Scholar 

  28. Thomsen M, Fernandez-Pello C, Ruff GA, Urban DL (2019) Buoyancy effects on concurrent flame spread over thick PMMA. Combust Flame 199:279–291. https://doi.org/10.1016/j.combustflame.2018.10.016

    Article  Google Scholar 

  29. Fernandez-Pello C (1994) The solid phase. In: Cox G (ed) Combustion fundamentals of fire. Academic Press Limited, London, pp 31–100

    Google Scholar 

  30. Williams FA (1976) Mechanisms of fire spread. Symp Combust 16:1281–1294. https://doi.org/10.1016/S0082-0784(77)80415-3

    Article  Google Scholar 

  31. Quintiere J (1981) A simplified theory for generalizing results from a radiant panel rate of flame spread apparatus. Fire Mater 5:52–60. https://doi.org/10.1002/fam.810050204

    Article  Google Scholar 

  32. Delichatsios MA, Altenkirch RA, Bundy MF, Bhattacharjee S, Tang LIN, Sacksteder K (2000) Creeping flame spread along fuel cylinders in forced and natural flows and microgravity. Proc Combust Inst 28:2835–2842

    Article  Google Scholar 

  33. Wichman IS (1992) Theory of opposed-flow flame spread. Prog Energy Combust Sci 18:553–593. https://doi.org/10.1016/0360-1285(92)90039-4

    Article  Google Scholar 

  34. Bhattacharjee, S., Altenkirch, R.A. Radiation-controlled, opposed-flow flame spread in a microgravity environment. Twenty-Third Symp Combust, pp. 1627–1633 (1990).

  35. de Ris JN (1969) Spread of a laminar diffusion flame. Symp Combust 12:241–252. https://doi.org/10.1016/S0082-0784(69)80407-8

    Article  Google Scholar 

  36. Hernández N, Fuentes A, Reszka P, Fernández-Pello AC (2019) Piloted ignition delay times on optically thin PMMA cylinders. Proc Combust Inst 37:3993–4000. https://doi.org/10.1016/j.proci.2018.06.053

    Article  Google Scholar 

  37. Mao C-P, Fernandez-Pello AC, Pagni PJ (1984) Mixed convective burning of a fuel surface with arbitrary inclination. J Heat Transf 106:304–309. https://doi.org/10.1115/1.3246673

    Article  Google Scholar 

  38. Gollner MJ, Huang X, Cobian J, Rangwala AS, Williams FA (2013) Experimental study of upward flame spread of an inclined fuel surface. Proc Combust Inst 34:2531–2538. https://doi.org/10.1016/j.proci.2012.06.063

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NASA Grants NNX10AE01G and NNX13AL10A. Maria Thomsen would like to acknowledge the support of Chile’s ANID FONDECYT Postdoctoral 3200964. The authors would also like to thank Prof. Andres Fuentes for his help with the temperature model description and his discussions about the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Thomsen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomsen, M., Carmignani, L., Rodriguez, A. et al. Downward Flame Spread Rate Over PMMA Rods Under External Radiant Heating. Fire Technol 58, 2229–2250 (2022). https://doi.org/10.1007/s10694-022-01245-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-022-01245-y

Keywords

Navigation