Skip to main content
Log in

Fire Zone Diagram of Flame-retardant Cables: Ignition and Upward Flame Spread

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Electrical cable is a common fire risk and hazard, and once ignited, a cable fire can spread to other rooms and floors by following the direction and location of cables. This work investigated the ignition and upward flame spread over the 1-m long cable under a growing heat flux. Results showed that the flame-retardant cables could be easily ignited by a small flame after a weak irradiation (5 kW/m2) if preheated to 70°C. As the external radiation increases, the cable surface temperature increases, and the upward flame spread rate increases significantly. Once the cable surface reaches 240°C, piloted ignition can be achieved. With the combined effect of external heating (> 18 kW/m2) and smoldering, auto-ignition could be achieved once the cable sheath reaches 500 °C. Moreover, flame-retardant cable fire is intense with severe melting, dripping, swelling, and cracking. The falling cracks and dripping flow can form a pool fire to increase the fire hazard. Finally, a new fire-zone diagram with the surface temperature and critical mass flux was proposed to quantify the cable fire hazard. This work provides important information about fire behaviors of the flame-retardant cable under a real fire scene and may guide the design of fire-resistant cables.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Keski-Rahkonen O, Mangs J (2002) Electrical ignition sources in nuclear power plants: Statistical, modelling and experimental studies. Nucl Eng Des 213:209–221. https://doi.org/10.1016/S0029-5493(01)00510-6

    Article  Google Scholar 

  2. Huang X, Nakamura Y (2020) A review of fundamental combustion phenomena in wire fires. Fire Technol 56:315–360. https://doi.org/10.1007/s10694-019-00918-5

    Article  Google Scholar 

  3. Kw BACK (1976) Methods and methods and methods. Contemp Psychol: A J Rev 21:20–21. https://doi.org/10.1037/014836

    Article  Google Scholar 

  4. Campbell R 2019 Home Electrical Fires. National Fire Protection Association (NFPA)

  5. Gallucci RHV (2017) Statistical characterization of cable electrical failure temperatures due to fire for nuclear power plant risk applications. Fire Technol 53:401–412. https://doi.org/10.1007/s10694-016-0616-0

    Article  Google Scholar 

  6. Gong T, Xie Q, Huang X (2018) Fire behaviors of flame-retardant cables part I: decomposition, swelling and spontaneous ignition. Fire Saf J 95:113–121. https://doi.org/10.1016/j.firesaf.2017.10.005

    Article  Google Scholar 

  7. Sun P, Lin S, Huang X (2020) Ignition of thin fuel by thermoplastic drips: an experimental study for the dripping ignition theory. Fire Saf J 115:103006. https://doi.org/10.1016/j.firesaf.2020.103006

    Article  Google Scholar 

  8. Xie Q, Zhang H, Ye R (2009) Experimental study on melting and flowing behavior of thermoplastics combustion based on a new setup with a T-shape trough. J Hazard Mater 166:1321–1325. https://doi.org/10.1016/j.jhazmat.2008.12.057

    Article  Google Scholar 

  9. He H, Zhang Q, Wang X, Wang F, Zhao L, Zhang Y (2017) The influence of currents on the ignition and correlative smoke productions for PVC-insulated electrical wires. Fire Technol 53:1275–1289. https://doi.org/10.1007/s10694-016-0634-y

    Article  Google Scholar 

  10. Kikuchi M, Fujita O, Ito K, Sato A, Sakuraya T 1998 Experimental study on flame spread over wire insulation in microgravity. Symposium (International) on Combustion 27: 2507–2514 https://doi.org/10.1016/S0082-0784(98)80102-1.

  11. Nakamura Y, Yoshimura N, Ito H, Azumaya K, Fujita O 2009 Flame spread over electric wire in sub-atmospheric pressure. Proceedings of the Combustion Institute 32 II: 2559–2566 https://doi.org/10.1016/j.proci.2008.06.146.

  12. Huang X, Nakamura Y, Williams FA (2013) Ignition-to-spread transition of externally heated electrical wire. Proc Combust Inst 34:2505–2512. https://doi.org/10.1016/j.proci.2012.06.047

    Article  Google Scholar 

  13. Kobayashi Y, Huang X, Nakaya S, Tsue M, Fernandez-Pello C (2017) Opposed flame spread over wires: the role of dripping and core. Fire Saf J 91:112–122. https://doi.org/10.1016/j.firesaf.2017.03.047

    Article  Google Scholar 

  14. Tewarson A, Khan MM 1988 Flame propagation for polymers in cylindrical configuration and vertical orientation. Symposium (International) on Combustion 22: 1231–1240 https://doi.org/10.1016/S0082-0784(89)80134-1.

  15. Journeaux T, Försth M, Messa S, Kobilsek M, Sundström B, Johansson P et al (2010) CEMAC - CE-marking of cables. SP Rapport NV - 2010:27

    Google Scholar 

  16. Huang X, Zhu H, Peng L, Zheng Z, Zeng W, Bi K et al (2019) Thermal characteristics of vertically spreading cable fires in confined compartments. Fire Technol 55:1849–1875. https://doi.org/10.1007/s10694-019-00833-9

    Article  Google Scholar 

  17. Novak C, Keller M, Meza T, McKinnies J, Espinosa E, Calhoun K (2018) Pinched cord and overdriven staple failures: research on the causation of an electrical fire. Fire Technol 54:921–941. https://doi.org/10.1007/s10694-018-0715-1

    Article  Google Scholar 

  18. Zavaleta P, Hanouzet R, Beji T (2019) Improved assessment of fire spread over horizontal cable trays supported by video fire analysis. Fire Technol 55:233–255. https://doi.org/10.1007/s10694-018-0788-x

    Article  Google Scholar 

  19. Fernandez-Pello A, Hasegawa H, Staggs K, Lipska-quinn A, Alvares N (1991) A study of the fire performance of electrical cables. Fire Saf Sci 3:237–247. https://doi.org/10.3801/iafss.fss.3-237

    Article  Google Scholar 

  20. Courty L, Garo JP (2017) External heating of electrical cables and auto-ignition investigation. J Hazard Mater 321:528–536. https://doi.org/10.1016/j.jhazmat.2016.09.042

    Article  Google Scholar 

  21. Miyamoto K, Huang X, Hashimoto N, Fujita O, Fernandez-Pello C (2016) Limiting oxygen concentration (LOC) of burning polyethylene insulated wires under external radiation. Fire Saf J 86:32–40. https://doi.org/10.1016/j.firesaf.2016.09.004

    Article  Google Scholar 

  22. Torero J 2016 Flaming Ignition of Solid Fuels. In: Hurley MJ, Gottuk DT, Hall JR, Harada K, Kuligowski ED, Puchovsky M, et al., editors. SFPE Handbook of Fire Protection Engineering. 5th ed., New York, NY: Springer 633–661 https://doi.org/10.1007/978-1-4939-2565-0.

  23. Osorio AF, Mizutani K, Fernandez-Pello C, Fujita O (2015) Microgravity flammability limits of ETFE insulated wires exposed to external radiation. Proc Combust Inst 35:2683–2689. https://doi.org/10.1016/j.proci.2014.09.003

    Article  Google Scholar 

  24. Konno Y, Kobayashi Y, Fernandez-Pello C, Hashimoto N, Nakaya S, Tsue M et al (2020) Opposed-flow flame spread and extinction in electric wires: the effects of gravity, external radiant heat flux, and wire characteristics on wire flammability. Fire Technol 56:131–148. https://doi.org/10.1007/s10694-019-00935-4

    Article  Google Scholar 

  25. Vermesi I, Roenner N, Pironi P, Hadden RM, Rein G (2016) Pyrolysis and ignition of a polymer by transient irradiation. Combust Flame 163:31–41. https://doi.org/10.1016/j.combustflame.2015.08.006

    Article  Google Scholar 

  26. Vermesi I, DiDomizio MJ, Richter F, Weckman EJ, Rein G (2017) Pyrolysis and spontaneous ignition of wood under transient irradiation: Experiments and a-priori predictions. Fire Saf J 91:218–225. https://doi.org/10.1016/j.firesaf.2017.03.081

    Article  Google Scholar 

  27. Lizhong Y, Zaifu G, Yupeng Z, Weicheng F (2007) The influence of different external heating ways on pyrolysis and spontaneous ignition of some woods. J Anal Appl Pyrol 78:40–45. https://doi.org/10.1016/j.jaap.2006.04.001

    Article  Google Scholar 

  28. Gollner MJ, Huang X, Cobian J, Rangwala AS, Williams FA (2013) Experimental study of upward flame spread of an inclined fuel surface. Proc Combust Inst 34:2531–2538. https://doi.org/10.1016/j.proci.2012.06.063

    Article  Google Scholar 

  29. Elliot PJ, Whiteley RH (1999) Cone calorimeter test for the measurement of flammability properties of insulated wire. Polym Degrad Stab 64:577–584. https://doi.org/10.1016/S0141-3910(98)00135-9

    Article  Google Scholar 

  30. Rein G 2014 Smoldering combustion. SFPE Handbook of Fire Protection Engineering 581–603. https://doi.org/10.1007/978-1-4939-2565-0_19

  31. Babrauskas V 2016 The Cone Calorimeter. In: Hurley M, editor. SFPE Handbook of Fire Protection Engineering. 5th Editio, Springer, London 952–980 https://doi.org/10.1007/978-1-4939-2565-0.

  32. Quintiere J 1981 Radiant Panel Rate of Flame Spread Apparatus

  33. ISO 5658–2 2006 Reaction to fire tests -- Spread of flame -- Part 2: Lateral spread on building and transport products in vertical configuration. International Organization for Standardization, Geneva

Download references

Acknowledgement

This work was supported by the National Key R&D Program of China (2017YFC0806400), National Natural Science Foundation of China (No. 51876183), the Fundamental Research Funds for the Central Universities (WK2320000041, WK2320000043, WK2320000047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiyuan Xie or Xinyan Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Video S1 35% power no ignition (MP4 15825 kb)

Video S2 40% heating power fire spread (MP4 17441 kb)

Video S3 50% heating power fire spread (MP4 16754 kb)

Video S4 60% heating power flame propagation (MP4 7509 kb)

Video S5 70% heating power flame propagation (MP4 13935 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Gong, T. & Huang, X. Fire Zone Diagram of Flame-retardant Cables: Ignition and Upward Flame Spread. Fire Technol 57, 2643–2659 (2021). https://doi.org/10.1007/s10694-021-01133-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-021-01133-x

Keywords

Navigation