Caton SE, Hakes RSP, Gorham DJ, Zhou A, Gollner MJ (2017) Review of pathways for building fire spread in the wildland urban interface part i: exposure conditions. Fire Technol 53:429–473. https://doi.org/10.1007/s10694-016-0589-z
Article
Google Scholar
Hakes R, Caton S, Gorham DJ, Gollner MJ (2016) A review of pathways to building fire spread in the wildland urban interface part ii: response of components and systems and mitigation strategies in the united states. Fire Technol 53:475–515
Article
Google Scholar
Manzello SL, Suzuki S, Gollner MJ, Fernandez-Pello AC (2020) Role of firebrand combustion in large outdoor fire spread. Prog Energy Combust Sci 76:100801. https://doi.org/10.1016/j.pecs.2019.100801
Article
Google Scholar
Syifa M, Panahi M, Lee CW (2020) Mapping of post-wildfire burned area using a hybrid algorithm and satellite data: the case of the camp fire wildfire in California, USA. Remote Sens 12(4):623. https://doi.org/10.3390/rs12040623
Article
Google Scholar
Caton-Kerr SE, Tohidi A, Gollner MJ (2019) Firebrand generation from thermally-degraded cylindrical wooden dowels. Front Mech Eng 5:1–12. https://doi.org/10.3389/fmech.2019.00032
Article
Google Scholar
Manzello SL, Cleary TG, Shields JR, Maranghides A, Mell W, Yang JC (2008) Experimental investigation of firebrands: generation and ignition of fuel beds. Fire Saf J 43:226–233. https://doi.org/10.1016/j.firesaf.2006.06.010
Article
Google Scholar
Manzello SL, Maranghides A, Mell WE, Cleary TG, Yang JC (2006) Firebrand production from burning vegetation. For Ecol Manage 234:S119. https://doi.org/10.1016/j.foreco.2006.08.160
Article
Google Scholar
Mell W, Maranghides A, McDermott R, Manzello SL (2009) Numerical simulation and experiments of burning douglas fir trees. Combust Flame 156:2023–2041. https://doi.org/10.1016/j.combustflame.2009.06.015
Article
Google Scholar
Manzello SL, Maranghides A, Shields JR, Mell WE, Hayashi Y, Nii D (2009) Mass and size distribution of firebrands generated from burning Korean pine (Pinus koraiensis) trees. Fire Mater 33:21–31
Article
Google Scholar
Manzello SL, Maranghides A, Shields JR, Mell WE, Hayashi Y, Nii D (2007) Measurement of firebrand production and heat release rate (HRR) from burning Korean pine trees. Proc 7th AOSFST. https://iafss.org/publications/aofst/7/108
Suzuki S, Manzello SL, Hayashi Y (2012) The size and mass distribution of firebrands collected from ignited building components exposed to wind. Proc Combust Inst 34:2479–2485
Article
Google Scholar
Suzuki S, Manzello SL, Lage M, Laing G (2012) Firebrand generation data obtained from a full-scale structure burn. Int J Wildl Fire 21:961–968
Article
Google Scholar
Hudson TR, Bray RB, Blunck DL, Page W, Butler B (2020) Effects of fuel morphology on ember generation characteristics at the tree scale. Int J Wildl Fire 29(11):1042–1051
Article
Google Scholar
Barr BW, Ezekoye OA (2013) Thermo-mechanical modeling of firebrand breakage on a fractal tree. Proc Combust Inst 34:2649–2656. https://doi.org/10.1016/j.proci.2012.07.066
Article
Google Scholar
Hudson TR, Blunck DL (2019) Effects of fuel characteristics on ember generation characteristics at branch-scales. Int J Wildl Fire 28:941–950. https://doi.org/10.1071/WF19075
Article
Google Scholar
McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overhold K (2020) Sixth Edition Fire Dynamics Simulator User ’s Guide (FDS). NIST Spec Publ 1019 Sixth Edit: https://doi.org/https://doi.org/10.6028/NIST.SP.1019
Hariharan SB (2020) Experimental Investigations and Scaling Analyses of Whirling Flames. PhD Dissertation, University of Maryland, College Park
Urbanski S (2014) Wildland fire emissions, carbon, and climate: Emission factors. For Ecol Manage 317:51–60
Article
Google Scholar
McMeeking GR, Kreidenweis SM, Baker S et al (2009) Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. J Geophys Res Atmos 114:1–20. https://doi.org/10.1029/2009JD011836
Article
Google Scholar
White JP, Link ED, Trouvé A, Sunderland PB, Marshall AW (2017) A general calorimetry framework for measurement of combustion efficiency in a suppressed turbulent line fire. Fire Saf J 92:164–176. https://doi.org/10.1016/j.firesaf.2017.06.009
Article
Google Scholar
Drysdale D (2016) SFPE Handbook of Fire Protection Engineering, Chapter 5. Springer, Fifth Edit
Google Scholar
Thomas JC, Mueller EV, Santamaria S et al (2017) Investigation of firebrand generation from an experimental fire: development of a reliable data collection methodology. Fire Saf J 91:864–871. https://doi.org/10.1016/j.firesaf.2017.04.002
Article
Google Scholar
El Houssami M, Mueller E, Filkov A, Thomas JC, Skowronski N, Gallagher MR, Clark K, Kremens R, Simeoni A (2016) Experimental procedures characterising firebrand generation in wildland fires. Fire Technol 52:731–751
Article
Google Scholar