Skip to main content
Log in

Comparative Analysis of Post-Earthquake Fires in Japan from 1995 to 2017

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Post-earthquakes fires are high-consequence events, which may cause extensive damage once occurred. However, their nature has not been fully investigated as they are low-frequency events at the same time. A questionnaire survey was conducted for the fire services that corresponded to post-earthquake fires in their areas of jurisdiction in recent years, and outline data on fires following nine earthquakes was collected. A database containing information on 665 fires following 11 earthquakes in Japan from 1995 to 2017 was constructed by integrating survey data into an existing database of fires following the 1995 Kobe and 2011 Tohoku earthquakes. Through this database, the features of post-earthquake fires were comparatively analyzed from the viewpoint of types and causes of fire, ignition, fire spread in urban areas, firefighting activity, fatalities, and damage to fire safety equipment systems. The result shows that electrical is increasing in proportion in comparison with the earlier earthquakes among several causes of ignition; about 70% of all ignitions following major earthquakes occurred within a day from the shaking; and the average time required for fire engines to discharge water after ignition increased by 8–25 times in comparison with the ordinary cases. Quantitative correlations for the rate of ignition, \( r \), cumulative relative frequency of ignition, \( f \), and virtual travel speed of fire engines, \( v_{FF} \), that can be used for the risk assessment of post-earthquake fires were also developed. This comparative analysis provides a comprehensive perspective on the issues of post-earthquake fires that have formerly been analyzed fragmentally and construct a technical basis for the future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Scawthorn C, Eidinger JM, Schiff AJ (2005) Fire following earthquake, technical council on lifeline earthquake engineering, Monograph No. 26. American Society of Civil Engineers

  2. The 1923 Kanto Earthquake Disaster, Report of the Committee for the Inheritance of Disaster Experience, Cabinet Office of Japan, 2006

  3. Fire and Disaster Management Agency. Report on the Great Hanshin-Awaji Earthquake Disaster, 2006

  4. Fire and Disaster Management Agency. Report on the 2011 Tohoku Earthquake (Great East Japan Earthquake Disaster) 2018

  5. Fire and Disaster Management Agency. Report on the Northern Iwate Earthquake, 1999

  6. Fire and Disaster Management Agency. Report on the Miyakejima-Nijima-Kozushima Earthquake, 2000

  7. Fire and Disaster Management Agency. Report on the Western Tottori Earthquake, 2002

  8. Fire and Disaster Management Agency. Report on the 2001 Geiyo Earthquake, 2002

  9. Fire and Disaster Management Agency. Report on the Miyagi-oki Earthquake, 2003

  10. Fire and Disaster Management Agency. Report on the Northern Miyagi Earthquake, 2004

  11. Fire and Disaster Management Agency. Report on the 2003 Tokachi-oki Earthquake, 2004

  12. Fire and Disaster Management Agency. Report on the 2004 Niigata-Chuetsu Earthquake, 2009

  13. Fire and Disaster Management Agency. Report on the Western Fukuoka Earthquake, 2009

  14. Fire and Disaster Management Agency. Report on the Miyagi-oki Earthquake, 2006

  15. Fire and Disaster Management Agency. Report on the 2007 Niigata-Chuetsi-oki Earthquake, 2013

  16. Fire and Disaster Management Agency. Report on the 2007 Noto Earthquake, 2009

  17. Fire and Disaster Management Agency. Report on the 2008 Iwate-Miyagi Earthquake, 2010

  18. Fire and Disaster Management Agency. Report on the Northern Iwate Earthquake, 2009

  19. Fire and Disaster Management Agency. Report on the Suruga-wan Earthquake, 2010

  20. Fire and Disaster Management Agency. Report on the Awaji Earthquake, 2013

  21. Fire and Disaster Management Agency. Report on the Northern Nagano Earthquake, 2015

  22. Fire and Disaster Management Agency. Report on the Kumamoto Earthquake, 2018

  23. Fire and Disaster Management Agency. Report on the Uchiura-wan Earthquake, 2016

  24. Fire and Disaster Management Agency. Report on the Central Tottori Earthquake, 2017

  25. Fire and Disaster Management Agency. Report on the Northern Ibaraki Earthquake, 2017

  26. Building Research Institute. Preliminary report on the damage caused by the 1995 Hyogo-Ken-Nanbu Earthquake, 1995

  27. National Research Institute for Fire and Disaster. Preliminary Survey Report of Urban Fires following the Hyogo-ken Nanbu Earthquake in Kobe City, 1995

  28. Japan Association for Fire Science and Engineering. Survey Report of Fires Following the 1995 Hyogo-ken Nanbu Earthquake, 1996

  29. Hokugo A (1997) The performance of fire protection of buildings against the fires following the Great Hanshin-Awaji Earthquake. Fire Saf Sci 5:947–958. http://doi.org/10.3801/IAFSS.FSS.5-947.

    Article  Google Scholar 

  30. Sekizawa A (1997) Post-earthquake fires and performance of firefighting activity in the early stage in the 1995 Great Hanshin Earthquake. Fire Saf Sci 5:971–982. http://doi.org/10.3801/IAFSS.FSS.5-971.

    Article  Google Scholar 

  31. Architectural Institute of Japan (1998) Report on the Hanshin-Awaji Earthquake Disaster, vol. 6

  32. National Research Institute of Fire and Disaster (2005) Survey report on the damage and firefighting activity of the 2004 Niigata-Chuetsu Earthquake, Report of NRIFD, vol. 69

  33. Tanaka T (2012) Characteristics and problems of fires following the Great East Japan earthquake in March 2011. Fire Saf J 54:197–202. https://doi.org/10.1016/j.firesaf.2012.07.002.

    Article  Google Scholar 

  34. Hokugo A, Nishino T, Inada T (2011) Damage and effects caused by tsunami fires: fire spread, firefighting and evacuation. Fire Sci Technol 30:117–137. https://doi.org/10.1016/j.proeng.2013.08.051.

    Article  Google Scholar 

  35. Sekizawa A, Sasaki K (2014) Study on fires following the 2011 Great East-Japan Earthquake based on the Questionnaire Survey to Fire Departments in affected areas. Fire Saf Sci 11:691–703. http://doi.org/10.3801/IAFSS.FSS.11-691.

    Article  Google Scholar 

  36. Japan Association for Fire Science and Engineering (2015) Survey Report of the 2011 Great East-Japan Earthquake Disaster

  37. Joint Editorial Committee for the Report on the Great East Japan Earthquake Disaster (2016) Report on the Great East Japan earthquake disaster, vol. 7

  38. National Institute for Land and Infrastructure Management (2016) Quick report of the field survey on the building damage by the 2016 Kumamoto Earthquake, Technical Report of NILIM, No. 929

  39. Khorasani NE, Garlock MEM (2017) Overview of fire following earthquake: historical events and community responses. Int J Disaster Resil Built Environ 8(2):158–174. https://doi.org/10.1108/IJDRBE-02-2015-0005.

    Article  Google Scholar 

  40. National Institute of Advanced Industrial Science and Technology. QuiQuake: quick estimation system for earthquake map triggered by observed records. https://gbank.gsj.jp/QuiQuake/

  41. Suetomi I, Ishida E, Fukushima Y (2010) Modelling of site amplification and house information for real-time disaster prediction over a wide area. In: Proceedings of 13th symposium on Japan Association for Earthquake Engineering, pp 4305–4312

  42. Hatayama K (2008) Lessons from the 2003 Tokachi-oki, Japan, earthquake for prediction of long-period strong ground motions and sloshing damage to oil storage tanks. J Seismol 12(2):255–263.

    Article  Google Scholar 

  43. Kawasumi H (1961) Examination of earthquake-fire damage in Tokyo Metropolis. Technical Report of Tokyo Fire Department

  44. Mizuno H, Horiuchi S (1976) Study on the relationship between the ratio of the outbreak of fires and that of the totally destroyed dwelling houses caused by the earthquakes. Bull Archit Inst Jpn 247:101–110.

    Google Scholar 

  45. Aoki Y (1990) Stochastic theory on outbreaks of fire following earthquake. J Archit Plan Environ Eng 412:53–60

    Google Scholar 

  46. Zhao S, Xiong L, Ren A (2006) A spatial-temporal stochastic simulation of fire outbreaks following earthquake based on GIS. J Fire Sci 24:313–339. https://doi.org/10.1177/0734904106060786.

    Article  Google Scholar 

  47. Davidson R (2009) Modeling post-earthquake fire ignitions using generalized linear (mixed) models. J Infrastruct Syst 15:351–360. https://doi.org/10.1061/(ASCE)1076-0342(2009)15:4(351).

    Article  Google Scholar 

  48. Zolfaghari MR, Peyghaleh E, Nasirzadeh G (2009) Fire following earthquake, infrastructure ignition modeling. J Fire Sci 27:45–79. https://doi.org/10.1177/0734904108094516.

    Article  Google Scholar 

  49. Scawthorn C (2009) Enhancements in HAZUS-MH, fire following earthquake Task3: updated ignition equation. Technical Report of SPA Project, No. 10010-01-07-01

  50. Yildiz S, Karaman H (2013) Post-earthquake ignition vulnerability assessment of Küçükçekmece District. Nat Hazards Earth Syst Sci 13:3357–3368. https://doi.org/10.5194/nhess-13-3357-2013.

    Article  Google Scholar 

  51. Himoto K, Yamada M, Nishino T (2014) Analysis of ignitions following 2011 Tohoku earthquake using Kawasumi Model. Fire Saf Sci 11:704–717. https://doi.org/10.3801/IAFSS.FSS.11-704.

    Article  Google Scholar 

  52. Anderson D, Davidson RA, Himoto K, Scawthorn C (2016) Statistical modeling of fire occurrence using data from the Tōhoku. Jpn Earthq Tsunami Risk Anal 36:378–395. https://doi.org/10.1111/risa.12455.

    Google Scholar 

  53. Khorasani NE, Gernay T, Garlock M (2017) Data-driven probabilistic post-earthquake fire ignition model for a community. Fire Saf J 94:33–44. https://doi.org/10.1016/j.firesaf.2017.09.005.

    Article  Google Scholar 

  54. Himoto K, Akimoto Y, Hokugo A, Tanaka T (2008) Risk and behavior of fire spread in a densely-built urban area. Fire Saf Sci 9:267–278. https://doi.org/10.3801/IAFSS.FSS.9-267.

    Article  Google Scholar 

  55. Sakai Y (2009) Relation between characteristics of strong ground motions and damages of buildings. Bull JAEE 9:12–19.

    Google Scholar 

  56. Kobe City Fire Department (1996) Damage of sprinkler system in the 1995 Southern Hyogo Prefecture Earthquake in Kobe City. Kasai 46(3):5–8

    Google Scholar 

  57. Osaka City Fire Department (1996) Damage in the 1995 Southern Hyogo Prefecture Earthquake and preparedness measures concerning fire protection equipment in Osaka City. Kasai 46(3):9–12.

    Google Scholar 

  58. Sakakibara T (2008) Damages caused by the West-off Fukuoka earthquake and countermeasures. Kasai 58(1):28–33

    Google Scholar 

  59. Investigation Committee of Fire and Disaster Management Agency (2011) On the Fire Protection Equipment Resistant to Severe Earthquakes. Report of FDMA

Download references

Acknowledgement

This study was supported by JSPS KAKENHI Grant Number JP17H03369.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Himoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himoto, K. Comparative Analysis of Post-Earthquake Fires in Japan from 1995 to 2017. Fire Technol 55, 935–961 (2019). https://doi.org/10.1007/s10694-018-00813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-018-00813-5

Keywords

Navigation