Skip to main content

The Wind Effect on the Transport and Burning of Firebrands

Abstract

Firebrands, controlling spot fires, are often responsible for fast damages in wildland and urban fires. However, the behaviours of firebrands are difficult to predict. In this study, we conduct experiments in a wind tunnel to investigate the effect of wind on the smouldering burning and transport of firebrands. Three different sizes of disc wood particles (weighing about 1 g) are heated to generate smouldering firebrands, and then blown out by a horizontal wind of 5 or 7 m/s. In each experiment the transport distance (in the order of 1 m) and mass loss of firebrands are measured to examine their burning behaviours. For the first time, a bimodal distribution (burning and extinction modals) is observed for small firebrands under certain wind speeds (firebrands of 12-mm diameter and 5-mm thickness under a wind speed of 7 m/s in this work). Both the firebrand transport distance and mass loss in the extinction modal are smaller than those in the burning modal. The heat transfer analysis shows that there is a critical wind speed to quench the firebrand and produce a bimodal distribution, and its value increases with both the particle size and the heating duration. The predicted critical wind speed agrees well with experimental measurements.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Johnson EA, Miyanishi K (2001) Forest fires: behavior and ecological effects. Elsevier Science, Amsterdam

    Google Scholar 

  2. Mell WE, Manzello SL, Maranghides A, Butry D, Rehm RG (2010) The wildland–urban interface fire problem—current approaches and research needs. Int J Wildland Fire 19(2):238–251. doi:10.1071/WF07131

    Article  Google Scholar 

  3. Koo E, Linn RR, Pagni PJ, Edminster CB (2012) Modelling firebrand transport in wildfires using HIGRAD/FIRETEC. Int J Wildland Fire 21(4):396–417. doi:10.1071/WF09146

    Article  Google Scholar 

  4. Williams FA (1982) Urban and wildland fire phenomenology. Prog Energy Combust Sci 8(4):317–354. doi:10.1016/0360-1285(82)90004-1

    Article  Google Scholar 

  5. Albini FA, Forest I (1979) Spot fire distance from burning trees: a predictive model. Intermountain forest and range experiment station. Forest Service, US Department of Agriculture, Ogden, Utah, USA

    Google Scholar 

  6. Ellis PFM (2013) Firebrand characteristics of the stringy bark of messmate (Eucalyptus obliqua) investigated using non-tethered samples. Int J Wildland Fire 22(5):642–651. doi:10.1071/WF12141

    Article  Google Scholar 

  7. Pagni PJ (1993) Causes of the 20 October 1991 Oakland hills conflagration. Fire Saf J 21(4):331–339. doi:10.1016/0379-7112(93)90020-Q

    Article  Google Scholar 

  8. Caton SE, Hakes RSP, Gorham DJ, Zhou A, Gollner MJ (2016) Review of pathways for building fire spread in the wildland urban interface part I: exposure conditions. Fire Technol. doi:10.1007/s10694-016-0589-z

    Google Scholar 

  9. Hakes RSP, Caton SE, Gorham DJ, Gollner MJ (2016) A review of pathways for building fire spread in the wildland urban interface part ii: response of components and systems and mitigation strategies in the United States. Fire Technol. doi:10.1007/s10694-016-0601-7

    Google Scholar 

  10. Tarifa CS, Notario P, Moreno FG (1965) On the flight paths and lifetimes of burning particles of wood. In: Symposium (international) on combustion, vol 10. Elsevier, pp 1021–1037. doi: 10.1016/S0082-0784(65)80244-2

  11. Tarifa C, Del Notario P, Moreno F, Villa A (1967) Transport and combustion of firebrands, final report of grants FG-SP-11 and FG-SP-146. US Department of Agriculture Forest Service, Madrid, Spain

  12. Lee S-L, Hellman J (1969) Study of firebrand trajectories in a turbulent swirling natural convection plume. Combust Flame 13(6):645–655. doi:10.1016/0010-2180(69)90072-8

    Article  Google Scholar 

  13. Albini FA (1983) Transport of firebrands by line thermals. Combust Sci Technol 32(5–6):277–288. doi:10.1080/00102208308923662

    Article  Google Scholar 

  14. Woycheese J, Pagni P (1999) Combustion models for wooden brands. In: Proceedings 3rd international conference on fire research and engineering. Society of fire protection engineers, Washington, USA, 1999. p 53

  15. Himoto K, Tanaka T (2005) Transport of disk-shaped firebrands in a turbulent boundary layer. In: The eighth international symposium on fire safety science, pp 18–23

  16. Manzello SL, Maranghides A, Mell WE (2007) Firebrand generation from burning vegetation. Int J Wildland Fire 16(4):458–462. doi:10.1071/WF06079

    Article  Google Scholar 

  17. Manzello SL, Maranghides A, Shields JR, Mell WE, Hayashi Y, Nii D (2009) Mass and size distribution of firebrands generated from burning Korean pine (Pinus koraiensis) trees. Fire Mater 33(1):21–31. doi:10.1002/fam.977

    Article  Google Scholar 

  18. Manzello SL, Shields JR, Cleary TG, Maranghides A, Mell WE, Yang JC, Hayashi Y, Nii D, Kurita T (2008) On the development and characterization of a firebrand generator. Fire Saf J 43(4):258–268. doi:10.1016/j.firesaf.2007.10.001

    Article  Google Scholar 

  19. Zhou K, Suzuki S, Manzello SL (2015) Experimental study of firebrand transport. Fire Technol 51(4):785–799. doi:10.1007/s10694-014-0411-8

    Article  Google Scholar 

  20. Manzello SL, Suzuki S (2013) Experimentally simulating wind driven firebrand showers in Wildland-Urban Interface (WUI) fires: overview of the NIST firebrand generator (NIST dragon) technology. Procedia Eng 62:91–102. doi:10.1016/j.proeng.2013.08.047

    Article  Google Scholar 

  21. Tse SD, Fernandez-Pello AC (1998) On the flight paths of metal particles and embers generated by power lines in high winds—a potential source of wildland fires. Fire Saf J 30(4):333–356. doi:10.1016/S0379-7112(97)00050-7

    Article  Google Scholar 

  22. Anthenien RA, Tse SD, Carlos Fernandez-Pello A (2006) On the trajectories of embers initially elevated or lofted by small scale ground fire plumes in high winds. Fire Saf J 41(5):349–363. doi:10.1016/j.firesaf.2006.01.005

    Article  Google Scholar 

  23. Sardoy N, Consalvi J-L, Porterie B, Fernandez-Pello AC (2007) Modeling transport and combustion of firebrands from burning trees. Combust Flame 150(3):151–169. doi:10.1016/j.combustflame.2007.04.008

    Article  Google Scholar 

  24. Sardoy N, Consalvi J, Kaiss A, Fernandez-Pello A, Porterie B (2008) Numerical study of ground-level distribution of firebrands generated by line fires. Combust Flame 154(3):478–488. doi:10.1016/j.combustflame.2008.05.006

    Article  Google Scholar 

  25. Ellis P (2010) The effect of aerodynamic behaviour of flakes of jarrah and karri bark on their potential behaviour as firebrands. J R Soc West Aust 93:21–27

    Google Scholar 

  26. Knight I, Ellis P, Sullivan A (2001) The CSIRO vertical wind tunnel. CSIRO forestry and forest products, technical report

  27. Knight I (2001) The design and construction of a vertical wind tunnel for the study of untethered firebrands in flight. Fire Technol 37(1):87–100. doi:10.1023/A:1011605719943

    Article  Google Scholar 

  28. Tohidi A, Bridges W (2015) Statistical description of firebrand size and shape distribution from coniferous trees for use in Metropolis Monte Carlo simulations of firebrand flight distance. Fire Saf J 77:21–35. doi:10.1016/j.firesaf.2015.07.008

    Article  Google Scholar 

  29. Koo E, Pagni PJ, Weise DR, Woycheese JP (2010) Firebrands and spotting ignition in large-scale fires. Int J Wildland Fire 19(7):818–843. doi:10.1071/WF07119

    Article  Google Scholar 

  30. Houssami EM, Mueller E, Filkov A, Thomas JC, Skowronski N, Gallagher MR, Clark K, Kremens R, Simeoni A (2016) Experimental procedures characterising firebrand generation in wildland fires. Fire Technology 52(3):731–751. doi:10.1007/s10694-015-0492-z

    Article  Google Scholar 

  31. Cheney NP, Gould JS, Catchpole WR (1998) Prediction of fire spread in grasslands. Int J Wildland Fire 8(1):1–13. doi:10.1071/WF9980001

    Article  Google Scholar 

  32. Andrews PL, Cruz MG, Rothermel RC (2013) Examination of the wind speed limit function in the Rothermel surface fire spread model. Int J Wildland Fire 22(7):959–969. doi:10.1071/WF12122

    Article  Google Scholar 

  33. Beer T (1996) Environmental oceanography. CRC marine science. Taylor & Francis, Routledge

    Google Scholar 

  34. Englund F, Nussbaum RM (2000) Monoterpenes in scots pine and Norway spruce and their emission during kiln drying. Holzforschung 54(5):449–456. doi:10.1515/HF.2000.075

    Article  Google Scholar 

  35. Samuelsson R, Nilsson C, Burvall J (2006) Sampling and GC-MS as a method for analysis of volatile organic compounds (VOC) emitted during oven drying of biomass materials. Biomass Bioenergy 30(11):923–928. doi:10.1016/j.biombioe.2006.06.003

    Article  Google Scholar 

  36. Song J, Wang S, Chen H (2014) Safety distance for preventing hot particle ignition of building insulation materials. Theor Appl Mech Lett 4(3):034005. doi:10.1063/2.1403405

    Article  Google Scholar 

  37. Bergman TL, Incropera FP (2011) Introduction to heat transfer. Wiley, Hoboken

    Google Scholar 

  38. Su Y, Luo Y, Wu W, Zhang Y, Zhao S (2012) Characteristics of pine wood oxidative pyrolysis: degradation behavior, carbon oxide production and heat properties. J Anal Appl Pyrolysis 98:137–143. doi:10.1016/j.jaap.2012.07.005

    Article  Google Scholar 

  39. Bergman TL, Incropera FP, Lavine AS (2011) Fundamentals of heat and mass transfer. Wiley, Hoboken

    Google Scholar 

  40. Di Blasi C (1994) Processes of flames spreading over the surface of charring fuels: effects of the solid thickness. Combust Flame 97(2):225–239. doi:10.1016/0010-2180(94)90006-X

    Article  Google Scholar 

  41. Grishin AM (1997) Mathematical modeling of forest fires and new methods of fighting them. Publishing House of the Tomsk state university, Siberia, Russia

  42. Quintiere JG (2006) Fundamentals of fire phenomena. Wiley, Hoboken

    Book  Google Scholar 

Download references

Acknowledgements

This research is funded by the National Natural Science Foundation of China (Nos. 51625602 and 51476156) and the National Key Research and Development Plan (No. 2016YFC0800100). This work was also supported by the Fundamental Research Funds for the Central Universities (Nos. WK2320000033 and WK2320000036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naian Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, J., Huang, X., Liu, N. et al. The Wind Effect on the Transport and Burning of Firebrands. Fire Technol 53, 1555–1568 (2017). https://doi.org/10.1007/s10694-017-0647-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-017-0647-1

Keywords

  • Spot fire
  • Smouldering
  • Extinction
  • Bimodal distribution
  • Critical wind speed