Skip to main content

Experimental Studies of Electromagnetic Wave Attenuation by Flame and Smoke in Structure Fire


Attenuation of electromagnetic waves in the fire scene is an important issue when the stability of wireless communication is concerned, especially in fire rescue scenarios of high-rise buildings. Therefore, it is of importance to study the effects of flame and smoke on the attenuation of electromagnetic waves in structure fire. In this article, the influence of flame was studied through using alcohol as fuel. Different types of fuels were used to produce different concentrations of smoke. Different ranges of electromagnetic wave frequency from 350 MHz to 400 MHz were also used to investigate the frequency-dependent properties of the attenuation effect. The results show that flame itself does not have significant effects on the electromagnetic wave attenuation, but smoke plays an important role. Smoke from diesel fuel results in larger signal attenuation than other fuels, with attenuation of 1.16 dB at 300 MHz. The relationship between the concentration of smoke and signal attenuation follows the first-order exponential function. It also indicates that electromagnetic wave attenuation is frequency-dependent. The attenuation is 5.43 dB at 360 MHz when the smoke concentration is 20 dB/m, but only 0.26 dB at 400 MHz. It is suggested that a frequency-dependent assessment should be considered for investigating the reliability of the wireless communication system in structure fire in high-rise buildings.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11



Displaying data (dBm)


Measured data (dBm)


Previous data (dBm)


Concentration tested by the ISDM (dimensionless)

c :

Particle number concentration of smoke (cm−3)

d :

Mean grain size of smoke particles (μm)

η :

Constant of ionization chamber (cm−2)

A :

Multiple parameter of the fitting curve (dimensionless)

t :

Exponent parameter of the fitting curve (dimensionless)


Intercept parameter of the fitting curve (dimensionless)


Attenuation parameter of the fitting curve (dB)


Smoke conversion factor of different materials

E :

Scattered far-field component in the scattering plane (V/m)

E :

Orthogonal component (V/m)


Scattering angle in the scattering plane (rad)


Angle between the scattering plane and the incident electric field (rad)


Distance between the observation point and the scattering point (m)


Wave number (m−1)


Mie scattering amplitudes (V/m)


Mie scattering amplitudes (V/m)

an :

Mie coefficients (dimensionless)

bn :

Mie coefficients (dimensionless)

πn :

Angular function of Mie scattering theory (dimensionless)

τn :

Angular function of Mie scattering theory (dimensionless)


  1. Sun J, Hu L, Zhang Y (2013) A review on research of fire dynamics in high-rise buildings. Theor Appl Mech Lett 3(4):042001. doi: 10.1063/2.1304201

    Article  Google Scholar 

  2. Chen J, Zhang X, Su G, et al (2012) Study on fire-rescue command system and key technology of ultra high-rise building. Image and Signal Processing (CISP), 2012 5th International Congress on. IEEE 1906–1910. doi:10.1109/CISP.2012.6469834

  3. Schneider J, Hofmann F W (1959) Absorption and dispersion of microwaves in flames. Phys Rev 116(2):244. doi: 10.1103/PhysRev.116.244

    Article  Google Scholar 

  4. Belcher H, Sugden T M (1950) Studies on the ionization produced by metallic salts in flames II. Reactions governed by ionic equilibria in coal-gas/air flames containing alkali metal salts. Proc R Soc Lond A 202(1068):17–39. doi: 10.1098/rspa.1950.0083

    Article  Google Scholar 

  5. Koretzky E, Kuo SP (1998) Characterization of an atmospheric pressure plasma generated by a plasma torch array. Phys Plasmas (1994-present) 5(10):3774–3780. doi: 10.1063/1.872741

    Article  Google Scholar 

  6. Letsholathebe D, Mphale K (2013) Microwave phase perturbation and ionisation measurement in vegetation fire plasma. IET Microwaves Antennas Propag 7(9):741–745. doi: 10.1049/iet-map.2012.0468

    Article  Google Scholar 

  7. William DW, Adams JS, Batten JJ, et al (1970) Operation Euroka: an Australian mass fire experiment. Dep. of Supply, Aust. Def. Sci. Serv., Def. Stand. Lab

  8. Hata M (1983) Propagation tests for 23 GHz and 40 GHz. IEEE J Select Areas Commun 1(4):658–673. doi: 10.1109/JSAC.1983.1145971

    Article  Google Scholar 

  9. Korekado T, Nakao T (2005) Relationship between transmission characteristics of electromagnetic waves and fire plasma. J Inst Image Inf Telev Eng 59(4):643–646. doi: 10.3169/itej.59.643

    Google Scholar 

  10. Mphale KM, Letsholathebe D, Heron ML (2007) Effective complex permittivity of a weakly ionized vegetation litter fire at microwave frequencies. J Phys D Appl Phys 40(21): 6651. doi:10.1088/0022-3727/40/21/026

    Article  Google Scholar 

  11. Mphale KM, Luhanga PVC, Heron ML (2008) Microwave attenuation in forest fuel flames. Combust Flame 154(4): 728–739. doi: 10.1016/j.combustflame.2008.07.006

    Article  Google Scholar 

  12. Coleman C, Boan J. A Kirchhoff (2007) Integral approach to radio wave propagation in fire. IEEE Antennas and Propagation Society International Symposium. doi: 10.1109/APS.2007.4396355

  13. Starr JW, Lattimer BY (2014) Evaluation of navigation sensors in fire smoke environments. Fire Technol 50(6):1459–1481. doi: 10.1007/s10694-013-0356-3

    Article  Google Scholar 

  14. Baum TC, Thompson L, Ghorbani K (2015) The nature of fire ash particles: microwave material properties, dynamic behavior, and temperature correlation. IEEE J Select Topics Appl Earth Observ Remote Sens 8(2):480–492. doi: 10.1109/JSTARS.2014.2386394

    Article  Google Scholar 

  15. Cruz MG, Sullivan AL, Gould JS, et al (2012) Anatomy of a catastrophic wildfire: the Black Saturday Kilmore East fire in Victoria, Australia. For Ecol Manage 284:269–285. doi:10.1016/j.foreco.2012.02.035

    Article  Google Scholar 

  16. Banta RM, Olivier LD, Holloway ET, et al (1992) Smoke-column observations from two forest fires using Doppler lidar and Doppler radar. J Appl Meteorol 31(11): 1328–1349. doi: 10.1175/1520-0450(1992)031<1328:SCOFTF>2.0.CO;2

    Article  Google Scholar 

  17. Melnikov VM, Zrnic DS, Rabin RM (2009) Polarimetric radar properties of smoke plumes: a model. J Geophys Res Atmos (1984–2012) 114:D21204. doi: 10.1029/2009JD012647

    Article  Google Scholar 

  18. Rogers RR, Brown WOJ (1997) Radar observations of a major industrial fire. Bull Am Meteorol Soc 78(5):803–814. doi: 10.1175/1520-0477(1997)078<0803:ROOAMI>2.0.CO;2

    Article  Google Scholar 

  19. Jones TA, Christopher SA, Petersen W (2009) Dual-polarization radar characteristics of an apartment fire. J Atmos Ocean Technol 26(10):2257–2269. doi: 10.1175/2009JTECHA1290.1

    Article  Google Scholar 

  20. Kim JH, Starr JW, Lattimer BY (2014) Firefighting robot stereo infrared vision and radar sensor fusion for imaging through smoke. Fire Technol 51(4):823–845. doi: 10.1007/s10694-014-0413-6

    Article  Google Scholar 

  21. Kaiser T, Kempka T (2001) Is microwave radiation useful for fire detection? NIST SPECIAL PUBLICATION SP 107-121. Accessed in 25 March 2001

  22. Kempka T, Kaiser T, Solbach K (2006) Microwaves in fire detection. Fire Saf J 41(4): 327–333. doi:10.1016/j.firesaf.2005.12.008

    Article  Google Scholar 

  23. Erkelens JS, Venema VKC, Russchenberg HWJ, et al (2001) Coherent scattering of microwaves by particles: Evidence from clouds and smoke. J Atmos Sci 58(9):1091–1102. doi: 10.1175/1520-0469(2001)058<1091:CSOMBP>2.0.CO;2

    Article  Google Scholar 

  24. Martin Ralph F (1995) Using radar-measured radial vertical velocities to distinguish precipitation scattering from clear-air scattering. J Atmos Ocean Technol 12(2):257–267. doi:10.1175/1520-0426(1995)012<0257:URMRVV>2.0.CO;2

    Article  Google Scholar 

  25. Ottersten H (1969) Radar backscattering from the turbulent clear atmosphere. Radio Sci 4(12):1251–1255. doi:10.1029/RS004i012p01251

    Article  Google Scholar 

  26. Gossard EE (1979) A fresh look at the radar reflectivity of clouds. Radio Sci 14(6):1089–1097

    Article  Google Scholar 

  27. Zukoski EE, Cetegen B M, Kubota T (1985) Visible structure of buoyant diffusion flames. In: Symposium (International) on Combustion. Elsevier vol. 20, pp. 361–366. doi:10.1016/S0082-0784(85)80522-1

  28. Lin S, Li-jing W, Zhi-hui W, et al (2011) Research on the combustion performance of free-burning pool fire. Fire Sci Technol 30(8):668–670

    Google Scholar 

  29. Tu R (2012) Effects of low air pressure in high altitude area on pool fire burning behavior and flame image characteristics. Dissertation, University of Science and Technology of China

  30. Xue-Ming S, Jun F, Shi-Fei S, et al (2006) Study on fractal coagulation characteristics of fire smoke particles. Acta Phys Sinica 55(9):4466–4471

    Google Scholar 

  31. Mulholland GW (1995) Smoke production and properties. In: SFPE handbook of fire protection engineering vol. 3. National Fire Protection Association, Quincy, pp. 2–258

    Google Scholar 

  32. Mishchenko MI, Travis LD, Lacis AA (2002) Scattering, absorption, and emission of light by small particles, Cambridge University Press, London

    Google Scholar 

  33. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 330(3):377–445. doi:10.1002/andp.19083300302

    Article  MATH  Google Scholar 

  34. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2):279–285. doi: 10.1016/S0008-6223(00)00184-6

    Article  Google Scholar 

  35. Park KY, Lee SE, Kim CG, et al (2006) Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures. Compos Sci Technol 66(3):576–584. doi: 10.1016/j.compscitech.2005.05.034

    Article  Google Scholar 

  36. Zhou J, He J, Wang T, et al (2011) Design of mesostructured γ-Fe2O3/carbon nanocomposites for electromagnetic wave absorption applications. J Alloy Compd 509(32):8211–8214

    Article  Google Scholar 

  37. Lipson H, Stokes AR (1942) A new structure of carbon. Nature 149(3777):328–328. doi: 10.1016/j.jallcom.2011.05.042

    Article  Google Scholar 

  38. Cao MS, Song WL, Hou ZL, et al (2010) The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3):788–796. doi: 10.1016/j.carbon.2009.10.028

    Article  Google Scholar 

  39. Dikio ED (2011) Morphological characterization of soot from the atmospheric combustion of diesel fuel. Int J Electrochem Sci 6:2214–2222

    Google Scholar 

  40. Bueno-López A (2014) Diesel soot combustion ceria catalysts. Appl Catal B 146:1–11. doi: 10.1016/j.apcatb.2013.02.033

    Article  Google Scholar 

  41. Russell NV, Gibbins J R, Man CK, et al (2000) Coal char thermal deactivation under pulverized fuel combustion conditions. Energy Fuels 14(4):883–888. doi: 10.1021/ef990241w

    Article  Google Scholar 

  42. Li Z, Song C, Song J, et al (2011) Evolution of the nanostructure, fractal dimension and size of in-cylinder soot during diesel combustion process. Combust Flame 158(8): 1624–1630. doi: 10.1016/j.combustflame.2010.12.006

    Article  Google Scholar 

  43. Levy O, Stroud D (1997) Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers. Phys Rev B 56(13):8035. doi: 10.1103/PhysRevB.56.8035

    Article  Google Scholar 

  44. Liu Q, Zhang D, Fan T (2008) Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl Phys Lett 93(1):3110. doi: 10.1063/1.2957035

    Google Scholar 

  45. Song WL, Cao MS, Hou ZL, et al (2009) High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl Phys Lett 94(23):233110. doi:10.1063/1.3152764

    Article  Google Scholar 

  46. Oh JH, Oh KS, Kim CG, et al (2004) Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Compos B 35(1):49–56. doi: 10.1016/j.compositesb.2003.08.011

    Article  Google Scholar 

  47. Fan Y, Yang H, Li M, et al (2009) Evaluation of the microwave absorption property of flake graphite. Mater Chem Phys 115(2):696–698. doi: 10.1016/j.matchemphys.2009.02.010

    Article  Google Scholar 

  48. Xue-ming S, Kui Z, Hong-yong Y, et al (2005). Study on particle size and its distribution function of standard fire smoke. Eng Sci 7(8):51–55

    Google Scholar 

  49. Li M, Wang Z, Li L, et al (2013) Particulate status of diesel engine fueled with ethanol/diesel blends. Trans Chin Soc Agric Mach 44(3):28–32

    MathSciNet  Google Scholar 

Download references


This research was supported by the National Science and Technology Support Project (12th Five-year Plan) (Nos. 2015BAK10B00, 2015BAK10B04) the Beijing Municipal Science and Technology Project (No. Z161100001016001) and the Open Foundation of Hefei Institute for Public Safety Research, Tsinghua University. We would like to thank Professor Zhang Yongming and other teachers and students from the State Key Laboratory of Fire Science in University of Science and Technology of China for their assistance. We would also thank the Collaborative Innovation Centre of Public Safety of Tsinghua University for their help.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hong-yong Yuan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Yw., Yuan, Hy., Lu, Y. et al. Experimental Studies of Electromagnetic Wave Attenuation by Flame and Smoke in Structure Fire. Fire Technol 53, 5–27 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • High-rise building
  • Fire rescue
  • Smoke
  • Signal attenuation
  • Wireless communication