Advertisement

Fire Technology

, Volume 53, Issue 1, pp 43–64 | Cite as

Experimental and Numerical Study of Window Glass Breakage with Varying Shaded Widths under Thermal Loading

  • Haodong Chen
  • Qingsong Wang
  • Yu Wang
  • Han Zhao
  • Jinhua Sun
  • Linghui He
Article

Abstract

To investigate the effect of shaded width on the breaking behavior of window glass, a series of experiments was carried out on float glass with dimension of 600 mm × 600 mm × 6 mm in an enclosed compartment under radiant heat. The shaded width of glass pane ranged from 10 mm to 50 mm with an interval of 10 mm. Experimental results showed that crack patterns of the glass pane were influenced little by the shaded width, while the average value of the first breaking time of the glass pane decreased firstly and then increased with an increase in the shaded width. The average time to the first crack with the shaded width of 20 mm was shortest in experiments and the corresponding time was 572.5 s. In addition, the finite element method was also used to simulate the process of crack initiation and single crack propagation. Temperatures measured by thermocouples in experiments were employed as thermal loads for the problem of glass breakage. The first breaking time obtained by the program was in good agreement with experimental data.

Keywords

Glass breakage Shaded width Experiment Finite element method Radiant heat 

Nomenclature

a

Crack increment

a0

Critical crack length

b

Body force vector

B

Empirical factor

CR

Rayleigh wave speed

D

Stiffness tensor

E

Young’s modulus

F

Nodal force vector

g

Geometric factor

G

Cumulative Weibull function

H

Half-length of the window

I

Second-order identity tensor

K

Stiffness matrix

KI, KII, KIII

Stress intensity factors of modes I, II, and III

KIc, KIIc

Fracture toughness values of modes I and II

KIeff

Effective stress intensity factor of mode I

L

Thickness of glass

m

Shape parameter in Weibull distribution function

M

Mass matrix

r

Distance from crack tip, or radial coordinate

s

Shaded width

t

Time

Δt

Time increment

T

Transient temperature

T0

Initial temperature

u

Displacement vector

ü

Acceleration vector

U

Displacement vector of the finite element equation

\( {\dot{\mathbf{U}}} \)

Velocity vector of the finite element equation

Ü

Acceleration vector of the finite element equation

u, v, w

Displacements in the x, y, and z directions

V

Crack speed

x, y, z

Coordinates

Greek

β

Coefficient of linear expansion, or Newmark parameter

γ

Newmark parameter

Δ

Difference

ε

Strain tensor

εT

Temperature strain tensor

θ

Angle, or angular coordinate

θ0

Angle of crack growth

κ

Kolosov constant

ν

Poisson’s ratio

ρ

Density

σ

Stress tensor

σ0

Scale parameter in Weibull distribution function

σb

Breaking stress

σu

Location parameter in Weibull distribution function

Subscripts

avg

Average

b

Breakage

c

Center

hs

Heated shaded side

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 51578524 and 51120165001), National Basic Research Program of China (973 Program, Grant No. 2012CB719700), and Youth Innovation Promotion Association CAS (Grant No. 2013286).

References

  1. 1.
    Emmons HW (1986) The needed fire science. In: Fire Safety Science–Proceedings of the First International Symposium, Berkeley, California, USA. IAFSS, pp 33–53Google Scholar
  2. 2.
    Skelly MJ, Roby RJ, Beyler CL (1991) An experimental investigation of glass breakage in compartment fires. J Fire Protect Eng 3 (1):25-34. doi: 10.1177/104239159100300103 CrossRefGoogle Scholar
  3. 3.
    Joshi AA, Pagni PJ (1994) Fire-induced thermal fields in window glass. II—experiments. Fire Saf J 22 (1):45-65. doi: 10.1016/0379-7112(94)90051-5 CrossRefGoogle Scholar
  4. 4.
    Hassani SKS, Shields J, Silcock GW (1994–95) An experimental investigation into the behaviour of glazing in enclosure fire. J Appl Fire Sci 4 (4):303–323Google Scholar
  5. 5.
    Mowrer FW (1997) Window breakage induced by exterior fires. In: Paper presented at the Second International Conference on Fire Research and Engineering (ICFRE2), GaithersburgGoogle Scholar
  6. 6.
    Shields TJ, Silcock GWH, Hassani SKS (1997–98) The behavior of double glazing in an enclosure fire. J Appl Fire Sci 7 (3):267–286Google Scholar
  7. 7.
    Shields TJ, Silcock GWH, Hassani SKS (1997–98) The behavior of single glazing in an enclosure fire. J Appl Fire Sci 7 (2):145–163Google Scholar
  8. 8.
    Harada K, Enomoto A, Uede K, Wakamatsu T (2000) An experimental study on glass cracking and fallout by radiant heat exposure. In: Fire Safety Science–Proceedings of the Sixth International Symposium, University of Poitiers, France. IAFSS, pp 1063–1074. doi: 10.3801/IAFSS.FSS.6-1063
  9. 9.
    Khanina I, Vergara C, He YP (2000) Window glass breakage in fires. In: Proceedings of the Seventh Australian Heat and Mass Transfer Conference, Townsville, pp 187–193Google Scholar
  10. 10.
    Shields TJ, Silcock GWH, Flood MF (2001) Performance of a single glazing assembly exposed to enclosure corner fires of increasing severity. Fire Mater 25 (4):123–152. doi: 10.1002/fam.764 CrossRefGoogle Scholar
  11. 11.
    Shields TJ, Silcock GWH, Flood M (2002) Performance of a single glazing assembly exposed to a fire in the centre of an enclosure. Fire Mater 26 (2):51–75. doi:  10.1002/fam.783 CrossRefGoogle Scholar
  12. 12.
    Shields J, Silcock GWH, Flood F (2005) Behaviour of double glazing in corner fires. Fire Technol 41 (1):37–65. doi:  10.1007/s10694-005-4629-3 CrossRefGoogle Scholar
  13. 13.
    Klassen MS, Sutula JA, Holton MM, Roby RJ, Izbicki T (2006) Transmission through and breakage of multi-pane glazing due to radiant exposure. Fire Technol 42 (2):79–107. doi:  10.1007/s10694-006-7254-x CrossRefGoogle Scholar
  14. 14.
    Manzello SL, Gann RG, Kukuck SR, Prasad KR, Jones WW (2006) An experimental determination of a real fire performance of a non-load bearing glass wall assembly. Fire Technol 43 (1):77-89. doi:  10.1007/s10694-006-0001-5 CrossRefGoogle Scholar
  15. 15.
    Chow WK, Hung WY, Gao Y, Zou G, Dong H (2007) Experimental study on smoke movement leading to glass damages in double-skinned façade. Constr Build Mater 21 (3):556–566. doi:  10.1016/j.conbuildmat.2005.09.005 CrossRefGoogle Scholar
  16. 16.
    Xie QY, Zhang HP, Wan YT, Zhang QW, Cheng XD (2008) Full-scale experimental study on crack and fallout of toughened glass with different thicknesses. Fire Mater 32 (5):293-306. doi:  10.1002/fam.968 CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Wang QS, Zhu XB, Huang XJ, Sun JH (2011) Experimental study on crack of float glass with different thicknesses exposed to radiant heating. Procedia Eng 11:710-718. doi:  10.1016/j.proeng.2011.04.717 CrossRefGoogle Scholar
  18. 18.
    Li LM, Xie QY, Cheng XD, Zhang HP (2012) Cracking behavior of glazings with different thicknesses by radiant exposure. Fire Mater 36 (4):264-276. doi:  10.1002/fam.1108 CrossRefGoogle Scholar
  19. 19.
    Ni Z, Lu S, Peng L (2012) Experimental study on fire performance of double-skin glass facades. J Fire Sci 30 (5):457-472. doi:  10.1177/0734904112447179 CrossRefGoogle Scholar
  20. 20.
    Shao G, Wang Q, Zhao H, Wang Y, Chen H, Su Y, Sun J, He L (2014) Maximum temperature to withstand water film for tempered glass exposed to fire. Constr Build Mater 57:15–23. doi:  10.1016/j.conbuildmat.2014.01.094 CrossRefGoogle Scholar
  21. 21.
    Wang Y, Wang Q, Shao G, Chen H, Su Y, Sun J, He L, Liew KM (2014) Fracture behavior of a four-point fixed glass curtain wall under fire conditions. Fire Saf J 67:24-34. doi:  10.1016/j.firesaf.2014.05.002 CrossRefGoogle Scholar
  22. 22.
    Keski-Rahkonen O (1988) Breaking of window glass close to fire. Fire Mater 12 (2):61-69. doi:  10.1002/fam.810120204 CrossRefGoogle Scholar
  23. 23.
    Keski-Rahkonen O (1991) Breaking of window glass close to fire, II: circular panes. Fire Mater 15(1):11-16. doi:  10.1002/fam.810150104 CrossRefGoogle Scholar
  24. 24.
    Pagni PJ, Joshi AA (1991) Glass breaking in fires. In: Fire Safety Science–Proceedings of the Third International Symposium, Edinburgh. IAFSS, pp 791–802Google Scholar
  25. 25.
    Joshi AA, Pagni PJ (1994) Fire-induced thermal fields in window glass. I—theory. Fire Saf J 22 (1):25–43. doi:  10.1016/0379-7112(94)90050-7 CrossRefGoogle Scholar
  26. 26.
    Pagni PJ (2002) Thermal glass breakage. In: Fire Safety Science–Proceedings of the Seventh International Symposium, Worcester. IAFSS, pp 3–22Google Scholar
  27. 27.
    Chow WK, Gao Y (2008) Thermal stresses on window glasses upon heating. Constr Build Mater 22 (11):2157–2164. doi:  10.1016/j.conbuildmat.2007.09.004 CrossRefGoogle Scholar
  28. 28.
    Tofilo P, Delichatsios M (2010) Thermally induced stresses in glazing systems. J Fire Protect Eng 20 (2):101–116. doi:  10.1177/1042391509344243 CrossRefGoogle Scholar
  29. 29.
    Chow WK, Gao Y (2015) Mechanical behaviour of a rectangular glass panel in a fire. Glass Technol-Eur J Glass Sci Technol A 56 (1):1–13CrossRefGoogle Scholar
  30. 30.
    . Virgone J, Depecker P, Krauss G (1997) Computer simulation of glass temperatures in fire conditions. Build Environ 32 (1):13-23. doi:  10.1016/S0360-1323(96)00033-9 CrossRefGoogle Scholar
  31. 31.
    Dembele S, Rosario RAF, Wen JX (2007) Investigation of glazing behavior in a fire environment using a spectral discrete ordinates method for radiative heat transfer. Numer Heat Tr B-Fund 52 (6):489–506. doi:  10.1080/10407790701563672 CrossRefGoogle Scholar
  32. 32.
    Dembele S, Rosario RAF, Wang QS, Warren PD, Wen JX (2010) Thermal and stress analysis of glazing in fires and glass fracture modeling with a probabilistic approach. Numer Heat Tr B-Fund 58 (6):419-439. doi:  10.1080/10407790.2011.540953 CrossRefGoogle Scholar
  33. 33.
    Dembele S, Rosario RAF, Wen JX (2012) Thermal breakage of window glass in room fires conditions – analysis of some important parameters. Build Environ 54:61-70. doi:  10.1016/j.buildenv.2012.01.009 CrossRefGoogle Scholar
  34. 34.
    Wang QS, Zhang Y, Wang Y, Sun JH, He LH (2012) Dynamic three-dimensional stress prediction of window glass under thermal loading. Int J Therm Sci 59:152-160. doi:  10.1016/j.ijthermalsci.2012.03.018 CrossRefGoogle Scholar
  35. 35.
    Wang QS, Wang Y, Chen HD, Xiao HH, Sun JH, He LH (2013) Frame constraint effect on the window glass crack behavior exposed to a fire. Eng Fract Mech 108:109-119. doi:  10.1016/j.engfracmech.2013.03.010 CrossRefGoogle Scholar
  36. 36.
    Wang QS, Zhang Y, Sun JH, Wen JX, Dembele S (2011) Temperature and thermal stress simulation of window glass exposed to fire. Procedia Eng 11:452-460. doi:  10.1016/j.proeng.2011.04.682 CrossRefGoogle Scholar
  37. 37.
    Sincaglia PE, Barnett JR (1996) Development of a glass window fracture model for zone-type computer fire codes. J Fire Protect Eng 8 (3):101–117. doi:  10.1177/104239159600800301 CrossRefGoogle Scholar
  38. 38.
    Parry R, Wade CA, Spearpoint M (2003) Implementing a glass fracture module in the BRANZFIRE zone model. J Fire Protect Eng 13 (3):157–183. doi:  10.1177/1042391503033366 CrossRefGoogle Scholar
  39. 39.
    Pope ND, Bailey CG (2007) Development of a Gaussian glass breakage model within a fire field model. Fire Saf J 42 (5):366–376. doi:  10.1016/j.firesaf.2006.12.005 CrossRefGoogle Scholar
  40. 40.
    Kang K (2009) Assessment of a model development for window glass breakage due to fire exposure in a field model. Fire Saf J 44 (3):415–424. doi:  10.1016/j.firesaf.2008.09.002 CrossRefGoogle Scholar
  41. 41.
    Joshi AA, Pagni PJ (1991) User’s guide to BREAK1, the Berkeley algorithm for breaking window glass in a compartment fire. GaithersburgGoogle Scholar
  42. 42.
    Wang QS, Chen HD, Wang Y, Wen JX, Dembele S, Sun JH, He LH (2014) Development of a dynamic model for crack propagation in glazing system under thermal loading. Fire Saf J 63:113–124. doi:  10.1016/j.firesaf.2013.11.003 CrossRefGoogle Scholar
  43. 43.
    Bourhis EL (2008) Glass mechanics and technology. Wiley, WeinheimGoogle Scholar
  44. 44.
    Eslami MR, Hetnarski RB, Ignaczak J, Noda N, Sumi N, Tanigawa Y (2013) Theory of elasticity and thermal stresses. Springer, DordrechtCrossRefzbMATHGoogle Scholar
  45. 45.
    Duflot M (2008) The extended finite element method in thermoelastic fracture mechanics. Int J Numer Meth Engng 74 (5):827–847MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    McGraw D (1952) A method for determining Young’s modulus of glass at elevated temperatures. J Am Ceram Soc 35 (1):22–27CrossRefGoogle Scholar
  47. 47.
    Fluegel A (2010) Thermal expansion calculation for silicate glasses at 210° C based on a systematic analysis of global databases. Glass Technol-Eur J Glass Sci Technol A 51 (5):191–201Google Scholar
  48. 48.
    48. Wang Q, Wang Y, Zhang Y, Chen H, Sun J, He L (2014) A stochastic analysis of glass crack initiation under thermal loading. Appl Therm Eng 67 (1–2):447–457. doi:  10.1016/j.applthermaleng.2014.01.075 CrossRefGoogle Scholar
  49. 49.
    Wang Q, Chen H, Wang Y, Zhang Y, Sun J, He L (2013) The shading width influence on glass crack behavior under thermal radiation effect. In: Paper presented at the 13th International Conference on Fracture (ICF13), BeijingGoogle Scholar
  50. 50.
    Tabiei A, Wu J (2003) Development of the DYNA3D simulation code with automated fracture procedure for brick elements. Int J Numer Meth Engng 57 (14):1979–2006CrossRefzbMATHGoogle Scholar
  51. 51.
    Wu EM (1967) Application of fracture mechanics to anisotropic plates. J Appl Mech 34 (4):967–974. doi:  10.1115/1.3607864 CrossRefGoogle Scholar
  52. 52.
    Fineberg J, Marder M (1999) Instability in dynamic fracture. Phys Rep 313 (1):1-108MathSciNetCrossRefGoogle Scholar
  53. 53.
    Kaninnen M, Popelar C (1985) Advanced fracture mechanics. Oxford University Press, New YorkGoogle Scholar
  54. 54.
    Bathe K-J (1996) Finite element procedures. Prentice Hall, New JerseyzbMATHGoogle Scholar
  55. 55.
    Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85 (3):67–94Google Scholar
  56. 56.
    Hughes T (1987) The finite element method: linear static and dynamic finite element analysis. Prentice Hall, New JerseyzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Haodong Chen
    • 1
  • Qingsong Wang
    • 1
    • 2
  • Yu Wang
    • 1
  • Han Zhao
    • 1
  • Jinhua Sun
    • 1
    • 2
  • Linghui He
    • 1
  1. 1.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.Collaborative Innovation Center for Urban Public SafetyHefeiPeople’s Republic of China

Personalised recommendations