Fire Technology

, Volume 53, Issue 2, pp 429–473 | Cite as

Review of Pathways for Building Fire Spread in the Wildland Urban Interface Part I: Exposure Conditions

  • Sara E. Caton
  • Raquel S. P. Hakes
  • Daniel J. Gorham
  • Aixi Zhou
  • Michael J. GollnerEmail author


While the wildland–urban interface (WUI) is not a new concept, fires in WUI communities have rapidly expanded in frequency and severity over the past few decades. The number of structures lost per year has increased significantly, due in part to increased development in rural areas, fuel management policies, and climate change, all of which are projected to increase in the future. This two-part review presents an overview of research on the pathways for fire spread in the WUI. Recent involvement of the fire science community in WUI fire research has led to some great advances in knowledge; however, much work is left to be done. While the general pathways for fire spread in the WUI (radiative, flame, and ember exposure) are known, the exposure conditions generated by surrounding wildland fuels, nearby structures or other system-wide factors, and the subsequent response of WUI structures and communities are not well known or well understood. This first part of the review covers the current state of the WUI and existing knowledge on exposure conditions. Recommendations for future research and development are also presented for each part of the review.


Wildland urban interface WUI Wildfire Wildland fire Firebrands Embers Fire spread 



The authors would like to acknowledge the National Fire Protection Association, Fire Protection Research Foundation, the National Institute of Standards and Technology and the Joint Fire Science Program under project JFSP 15-1-04-4 for financial support of this project. They would also like to thank Casey Grant for his efforts coordinating this project, Kyle Kohler for his assistance compiling data, and comments from many experts in the field, especially Randall Bradley, Nelson Bryner, Jack Cohen, Ryan Depew, Steve Gage, Samuel Manzello, Alexander Maranghides, Don Oaks, Stephen Quarles, Michele Steinberg, Kevin Tolhurst and Rick Swan.


  1. 1.
    Cohen JD (2000) Preventing disaster: home ignitability in the wildland-urban interface. J For 98:15–21.
  2. 2.
    Gorham DJ, Caton S, Hakes R, Gollner MJ (2016) A review of pathways to building fire spread in the wildland urban interface Part II: response of components and systems and mitigation strategies in the United States. Fire Technol. Under Review.Google Scholar
  3. 3.
    Calkin DE, Cohen JD, Finney MA, Thompson MP (2014) How risk management can prevent future wildfire disasters in the wildland-urban interface. Proc Natl Acad Sci USA 111:746–751. doi: 10.1073/pnas.1315088111 CrossRefGoogle Scholar
  4. 4.
    Pellegrino JL, Bryner NP, Johnsson EL (2013) Wildland-urban interface fire research needs: workshop summary report. doi: 10.6028/NIST.SP.1150 CrossRefGoogle Scholar
  5. 5.
    Mell WE, Manzello SL, Maranghides A, et al. (2010) The wildland–urban interface fire problem—current approaches and research needs. Int J Wildland Fire 19:238. doi: 10.1071/WF07131 CrossRefGoogle Scholar
  6. 6.
    NFPA (2014) Firewise Communities. Accessed 3 Oct 2015
  7. 7.
    Firewise (2015) Firewise at NFPA: A Brief History. Accessed 3 Oct 2015
  8. 8.
    Tarifa CS, Notario PP Del, Moreno FG (1965) On the flight paths and lifetimes of burning particles of wood. P Combust Inst 10:1021–1037. doi: 10.1016/S0082-0784(65)80244-2 CrossRefGoogle Scholar
  9. 9.
    Woycheese J, Pagni P, Liepmann D (1999) Brand propagation from large-scale fires. J Fire Prot Eng 10:32–44. doi: 10.1177/104239159901000203 CrossRefGoogle Scholar
  10. 10.
    Manzello S (2014) Enabling the investigation of structure vulnerabilities to wind-driven firebrand showers in wildland-urban interface (WUI) fires. Fire Safety Sci 11:83–96. doi: 10.3801/IAFSS.FSS.11-83 CrossRefGoogle Scholar
  11. 11.
    Cohen J (2004) Relating flame radiation to home ignition using modeling and experimental crown fires. Can J For Res 34:1616–1626. doi: 10.1139/X04-049 CrossRefGoogle Scholar
  12. 12.
    Maranghides A, Mell W (2013) Framework for addressing the national wildland urban interface fire problem—determining fire and ember exposure zones using a WUI hazard scale. doi: 10.6028/NIST.TN.1748
  13. 13.
    Mell W, Maranghides A (2009) A case study of a community affected by the Witch and Guejito Fires.
  14. 14.
    Quarles S, Leschak P, Cowger R, et al. (2012) Lessons learned from Waldo Canyon: fire adapted communities mitigation assessment team findings. Insurance Institute of Business & Home Safety, Richburg, South CarolinaGoogle Scholar
  15. 15.
    Fernandez-Pello AC, Lautenberger C, Rich D, et al. (2015) Spot fire ignition of natural fuel beds by hot metal particles, embers, and sparks. Combust Sci Technol 187:269–295. doi: 10.1080/00102202.2014.973953 CrossRefGoogle Scholar
  16. 16.
    Manzello SL, Cleary TG, Shields JR, Yang JC (2006) On the ignition of fuel beds by firebrands. Fire Mater 30:77–87. doi: 10.1002/fam.901 CrossRefGoogle Scholar
  17. 17.
    Yin P, Liu N, Chen H, et al. (2012) New correlation between ignition time and moisture content for pine needles attacked by firebrands. Fire Technol 50:79–91. doi: 10.1007/s10694-012-0272-y CrossRefGoogle Scholar
  18. 18.
    Cohen J (2000) Examination of the home destruction in Los Alamos associated with the Cerro Grande Fire.
  19. 19.
    Cohen J, Stratton R (2008) Home destruction examination grass valley fire. USDA R5-TP-026b.
  20. 20.
    Maranghides A, McNamara D, Mell W, et al. (2013) A case study of a community affected by the Witch and Guejito fires: Report #2—evaluating the effects of hazard mitigation actions on structure ignitions. doi:: 10.6028/NIST.TN.1796
  21. 21.
    Syphard AD, Keeley JE, Massada AB, et al. (2012) Housing arrangement and location determine the likelihood of housing loss due to wildfire. PLoS One 7(3):e33954. doi: 10.1371/journal.pone.0033954 CrossRefGoogle Scholar
  22. 22.
    Cohen J (2008) The wildland-urban interface fire problem: a consequence of the fire exclusion paradigm. Forest Hist Today Fall pp 20–26Google Scholar
  23. 23.
    Thompson C (2001) Notices. Fed Reg 66(3):751–777.MathSciNetGoogle Scholar
  24. 24.
    Lampin-Maillet C, Jappiot M, Long M, et al. (2010) Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France. J Environ Manag 91(3):732–41. doi: 10.1016/j.jenvman.2009.10.001 CrossRefGoogle Scholar
  25. 25.
    Radeloff VC, Hammer RB, Stewart SI, et al. (2005) The wildland-urban interface in the United States. Ecol Appl 15:799–805. doi: 10.1890/04-1413 CrossRefGoogle Scholar
  26. 26.
    Stewart S, Radeloff V, Hammer RB, Hawbaker TJ (2007) Defining the wildland–urban interface. J For.
  27. 27.
    Brown H (2004) The air was fire: fire behavior at Peshtigo in 1871. Fire Manag Today 64(4):20–30.Google Scholar
  28. 28.
    NFPA (2014) About Fire Prevention Week. Accessed 1 Jan 2014
  29. 29.
    Pyne S (2008) Spark and Sprawl. For Hist Today Fall pp 4–10.Google Scholar
  30. 30.
    Grishin AM, Filkov AI, Loboda EL, et al. (2014) A field experiment on grass fire effects on wooden constructions and peat layer ignition. Int J Wildland Fire 23:445. doi: 10.1071/WF12069 CrossRefGoogle Scholar
  31. 31.
    McAneney J, Chen K, Pitman A (2009) 100-years of Australian bushfire property losses: is the risk significant and is it increasing? J Environ Manag 90:2819–22. doi: 10.1016/j.jenvman.2009.03.013 CrossRefGoogle Scholar
  32. 32.
    Short KC (2014) A spatial database of wildfires in the United States, 1992–2011. Earth Syst Sci Data 6:1–27. doi: 10.5194/essd-6-1-2014 CrossRefGoogle Scholar
  33. 33.
    Arno S, Allison-Bunnell S (2002) Flames in our forest: disaster or renewal? Island Press, Washington, DCGoogle Scholar
  34. 34.
  35. 35.
    USDA Forest Service (2013) Fiscal year 2014 Budget Overview.
  36. 36.
    Theobald D, Romme W (2007) Expansion of the US wildland–urban interface. Landsc Urban Plan 83:340–354. doi: 10.1016/j.landurbplan.2007.06.002 CrossRefGoogle Scholar
  37. 37.
    Gude P, Rasker R, Noort J Van Den (2008) Potential for future development on fire-prone lands. J For 198–205.
  38. 38.
    Gorte R (2013) The rising cost of wildfire protection. Headwaters Econ.
  39. 39.
    Blanchi R, Lucas C, Leonard J, Finkele K (2010) Meteorological conditions and wildfire-related houseloss in Australia. Int J Wildland Fire 19:914. doi: 10.1071/WF08175 CrossRefGoogle Scholar
  40. 40.
    Koo E, Pagni PJ, Weise DR, Woycheese JP (2010) Firebrands and spotting ignition in large-scale fires. Int J Wildland Fire 19:818. doi: 10.1071/WF07119 CrossRefGoogle Scholar
  41. 41.
    National Fire Protection Association (2012) NFPA 1141 Standard for fire protection infrastructure for land development in wildland, rural, and suburban areas.Google Scholar
  42. 42.
    National Fire Protection Association (2013) NFPA 1144 Standard for reducing structure ignition hazards from wildland fire.Google Scholar
  43. 43.
    International Code Council (2012) International Wildland-Urban Interface Code.Google Scholar
  44. 44.
    Fahy RF, Leblanc PR, Molis JL (2014) Firefighter fatalities in the United State-201. Quincy, MAGoogle Scholar
  45. 45.
    Butler BW (2014) Wildland firefighter safety zones: a review of past science and summary of future needs. Int J Wildland Fire 23:295–308. doi: 10.1071/WF13021 CrossRefGoogle Scholar
  46. 46.
    Teague B, McLeod R, Pascoe S (2010) 2009 Victorian Bushfires Royal Commission Final Report.
  47. 47.
    Lampin-Maillet C, Mantzavelas A, Galiana L, et al. (2010) Wildland urban interfaces, fire behaviour and vulnerability: characterization, mapping and assessment. In: Silva JS, Rego F, Fernandes P, Rigolot E (eds) Towards Integrated fire management—Outcomes Europe Project Fire Parad. European Forest Institute, Joensuu, pp 71–92Google Scholar
  48. 48.
    Reszka P, Fuentes A (2015) The great valparaiso fire and fire safety management in Chile. Fire Technol 51:753–758. doi: 10.1007/s10694-014-0427-0 CrossRefGoogle Scholar
  49. 49.
    Krawchuk MA, Moritz MA, Parisien M-A, et al. (2009) Global pyrogeography: the current and future distribution of wildfire. PLoS One 4:e5102. doi: 10.1371/journal.pone.0005102 CrossRefGoogle Scholar
  50. 50.
    Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci USA 107:19167–70. doi: 10.1073/pnas.1003669107 CrossRefGoogle Scholar
  51. 51.
    Dennison PE, Brewer SC, Arnold JD, Moritz MA (2014) Large wildfire trends in the western United States, 1984–2011. Geophys Res Lett 41:2928–2933. doi: 10.1002/2014GL059576 CrossRefGoogle Scholar
  52. 52.
    Wiedinmyer C, Hurteau MD (2010) Prescribed fire as a means of reducing forest carbon emissions in the western United States. Environ Sci Technol 44:1926–32. doi: 10.1021/es902455e CrossRefGoogle Scholar
  53. 53.
    Quintiere JG (2006) Fundamentals of fire phenomena. Wiley, ChichesterCrossRefGoogle Scholar
  54. 54.
    Drysdale D (2011) An introduction to fire dynamics. Wiley, ChichesterCrossRefGoogle Scholar
  55. 55.
    de Ris J (1979) Fire radiation—a review. In: 17th Symposium on Combustion. pp 1003–1016Google Scholar
  56. 56.
    de Ris J (2000) Radiation fire modeling. Proc Combust Inst 28(2):2751–2759. doi: 10.1016/S0082-0784(00)80696-7 CrossRefGoogle Scholar
  57. 57.
    Linan A, Williams FA (1972) Radiant ignition of a reactive solid with in-depth absorption. Combust Flame 18:85–97. doi: 10.1016/S0010-2180(72)80229-3 CrossRefGoogle Scholar
  58. 58.
    Shokri M, Beyler C (1989) Radiation from large pool fires. J Fire Prot Eng 1:141–149. doi: 10.1177/104239158900100404 CrossRefGoogle Scholar
  59. 59.
    Tien C, Lee K, Stretton A (2008) Radiation Heat Transfer. In: DiNenno P, Drysdale D (eds) SFPE Handbook of Fire Protection Engineering, 4th edn. NFPA, Quincy, pp 1-74–1-90Google Scholar
  60. 60.
  61. 61.
    Bergman T, Incropera F, Lavine A (2011) Fundamentals of heat and mass transfer. Wiley, New YorkGoogle Scholar
  62. 62.
    Cohen J, Saveland J (1997) Structure ignition assessment can help reduce fire damages in the WUI.
  63. 63.
    Cohen JD, Butler BW (1998) Modeling Potential Structure Ignitions from Flame Radiation Exposure with Implications for Wildland/Urban Interface Fire Management. In: 13th Fire Meterology Conference IAWF, Lorne, Australia, pp 81–86Google Scholar
  64. 64.
    Tran H, Cohen J, Chase R (1992) Modeling ignition of structures in wildland/urban interface fires. In: 1st International fire and materials conference. Inter Science Communications Limited, London, UK, Arlington, VA, pp 253–262Google Scholar
  65. 65.
    Reszka P, Borowiec P, Steinhaus T, Torero JL (2012) A methodology for the estimation of ignition delay times in forest fire modelling. Combust Flame 159:3652–3657. doi: 10.1016/j.combustflame.2012.08.004 CrossRefGoogle Scholar
  66. 66.
    Stocks BJ, Alexander ME, Wotton BM, et al. (2004) Crown fire behaviour in a northern jack pine black spruce forest. Can J For Res 34:1548–1560. doi: 10.1139/x04-054 CrossRefGoogle Scholar
  67. 67.
    Alexander ME, Stocks BJ, Wotton BM, et al. (1998) The international crown fire modelling experiment: an overview and progress report. In: Second symposium on fire forest. American Meteorological Society, Boston, MA, Phoenix, AZ, pp 20–23Google Scholar
  68. 68.
    Stoll AM, Chianta MA (1971) Heat transfer through fabrics as related to thermal injury. Trans N Y Acad Sci 33:649–670. doi: 10.1111/j.2164-0947.1971.tb02630.x CrossRefGoogle Scholar
  69. 69.
    Frankman DA, Webb BW, Butler BW, et al. (2013) Measurements of convective and radiative heating in wildland fires. Int J Wildland Fire 22:157–167. doi: 10.1071/WF11097 CrossRefGoogle Scholar
  70. 70.
    Frankman D, Webb B, Butler B (2013) The effect of sampling rate on interpretation of the temporal characteristics of radiative and convective heating in wildland flames. J Wildland Fire 22:168–173. doi: 10.1071/WF12034 CrossRefGoogle Scholar
  71. 71.
    Butler BW, Cohen J, Latham DJ, et al. (2004) Measurements of radiant emissive power and temperatures in crown fires. Can J For Res 34:1577–1587. doi: 10.1139/x04-060 CrossRefGoogle Scholar
  72. 72.
    Morandini F, Silvani X (2010) Experimental investigation of the physical mechanisms governing the spread of wildfires. Int J Wildland Fire 19:570. doi: 10.1071/WF08113 CrossRefGoogle Scholar
  73. 73.
    Silvani X, Morandini F (2009) Fire spread experiments in the field: temperature and heat fluxes measurements. Fire Safety J 44:279–285. doi: 10.1016/j.firesaf.2008.06.004 CrossRefGoogle Scholar
  74. 74.
    Silvani X, Morandini F, Muzy J-F (2009) Wildfire spread experiments: fluctuations in thermal measurements. Int Commun Heat Mass 36:887–892. doi: 10.1016/j.icheatmasstransfer.2009.06.008 CrossRefGoogle Scholar
  75. 75.
    Kuznetsov, VT, Filkov, AI, Isaev, Yu N, Guk VO (2014) Ignition of wood subjected to the decreasing radiant energy flux. Mater Sci Eng. doi: 10.1088/1757-899X/81/1/012071 Google Scholar
  76. 76.
  77. 77.
    Porterie B, Nicolas S, Consalvi JL, et al. (2005) Modeling thermal impact of wildland fires on structures in the urban interface. Part 1: radiative and convective components of flames representative of vegetation fires. Numer Heat Transf A 47:471–489. doi: 10.1080/10407780590891434 CrossRefGoogle Scholar
  78. 78.
    Ito A, Kashiwagi T (1988) Characterization of flame spread over PMMA using holographic interferometry sample orientation effects. Combust Flame 71:189–204. doi: 10.1016/0010-2180(88)90007-7 CrossRefGoogle Scholar
  79. 79.
    Quintiere J, Harkleroad M, Hasemi Y (1986) Wall flames and implications for upward flame spread. Combust Sci Technol 48:191–222. doi: 10.1080/00102208608923893 CrossRefGoogle Scholar
  80. 80.
    Babrauskas V (2003) Ignition handbook. Fire Science Publishers, IssaquahGoogle Scholar
  81. 81.
    Byram GM (1959) Combustion of forest fuels. In: Davis K (ed) Foret fire: control and use. McGraw-Hill, New York, pp 61–89Google Scholar
  82. 82.
    Thomas PH (1963) The size of flames from natural fires. Proc Combust Inst 9:844–859. doi: 10.1016/S0082-0784(63)80091-0 CrossRefGoogle Scholar
  83. 83.
    Cohen JD (2001) Wildland-urban fire—a different approach.
  84. 84.
    Pastor E, Zarate L, Planas E, Arnaldos J (2003) Mathematical models and calculation systems for the study of wildland fire behaviour. Prog Energ Combust. 29:139–153. doi: 10.1016/S0360-1285(03)00017-0 CrossRefGoogle Scholar
  85. 85.
    Morvan D, Larini M, Dupuy JL, et al. (2006) Behaviour modelling of wildland fires: a state of the Art. EUFIRELAB: Euro-Mediterranean Wildland Fire Laboratory, a “wall-less” Laboratory for Wildland Fire Sciences and Technolgies in the Euro-Mediterranean Region. Deliverable D-03-01Google Scholar
  86. 86.
    Andrews P, Bevins C, Seli R (2003) BehavePlus fire modeling system version 4.0: user’s guide. General Technical Report RMRS-GTR-106WWWGoogle Scholar
  87. 87.
    Finney M (2006) An overview of FlamMap fire modeling capabilities. USDA For Serv Proc 213–220.
  88. 88.
    Finney MA (2004) FARSITE: Fire Area Simulator—model development and evaluation.
  89. 89.
    Scott JH (2012) Introduction to fire behavior modeling. National Interagency Fuels, Fire, and Vegetation Technology Transfer pp 1–149.
  90. 90.
    Stocks B, Alexander M, Van Wagner C, et al. (1989) The Canadian forest fire danger rating system: an overview. For Chron 65:258–265. doi: 10.5558/tfc65258-4 CrossRefGoogle Scholar
  91. 91.
    Van-Wagner CE (1977) Conditions for the start and spread of crown fire. Can J For Res 7:23–34.CrossRefGoogle Scholar
  92. 92.
    McArthur A (1966) Weather and grassland fire behaviour. Foresty and Timber Bureau, Department of National Development, Commonwealth of AustraliaGoogle Scholar
  93. 93.
    McArthur AG (1966) Prescribed burning in Austrailia fire control. Aust For 30:4–11. doi: 10.1080/00049158.1966.10675391 CrossRefGoogle Scholar
  94. 94.
    McArthur A (1967) Fire behaviour in eucalypt forests, Leaflet No. 107. Forest Research Institute, CanberraGoogle Scholar
  95. 95.
    Cheney P, Sullivan A (2008) Grassfires: fuel, weather and fire behaviour, 2nd ed. CSIRO Publishing, CollingwoodGoogle Scholar
  96. 96.
    Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007. Part 1: physical and quasi-physical models. Int J Wildland Fire. doi: 10.1071/WF06143 Google Scholar
  97. 97.
    Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007. Part 1: empirical and quasi-empirical models. Int J Wildland Fire. doi: 10.1071/WF06142 Google Scholar
  98. 98.
    Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007. Part 3: Simulation and mathematical analogue models. Int J Wildland Fire. doi: 10.1071/WF06144 Google Scholar
  99. 99.
    Finney MA, Cohen JD, McAllister SS, Jolly WM (2013) On the need for a theory of wildland fire spread. Int J Wildland Fire 22:25–36. doi: 10.1071/WF11117 CrossRefGoogle Scholar
  100. 100.
    Viegas DX, Simeoni A (2010) Eruptive Behaviour of Forest Fires. Fire Technol 47:303–320. doi: 10.1007/s10694-010-0193-6 CrossRefGoogle Scholar
  101. 101.
    Drysdale DD, Macmillan A, Shilitto D (1992) The king’s cross fire: experimental verification of the “Trench effect.” Fire Safety J 18:75–82. doi: 10.1016/0379-7112(92)90048-H CrossRefGoogle Scholar
  102. 102.
    Atkinson GT, Drysdale DD, Wu Y (1995) Fire driven flow in an inclined trench. Fire Safety J 25:141–158. doi: 10.1016/0379-7112(95)00039-9 CrossRefGoogle Scholar
  103. 103.
    Drysdale DD, Macmillan J (1992) Flame spread on inclined surfaces. Fire Safety J 18:245–254.CrossRefGoogle Scholar
  104. 104.
    Finney MA, Cohen JD, Grenfell IC, Yedinak KM (2010) An examination of fire spread thresholds in discontinuous fuel beds. Int J Wildland Fire 19:163–170. doi: 10.1071/WF07177 CrossRefGoogle Scholar
  105. 105.
    Syphard AD, Keeley JE, Brennan TJ (2011) Factors affecting fuel break effectiveness in the control of large fires on the Los Padres National Forest, California. Int J Wildland Fire 20:764–775. doi: 10.1071/WF10065 CrossRefGoogle Scholar
  106. 106.
    Syphard AD, Keeley JE, Brennan TJ (2011) Comparing the role of fuel breaks across southern California national forests. For Ecol Manag 261:2038–2048. doi: 10.1016/j.foreco.2011.02.030 CrossRefGoogle Scholar
  107. 107.
    Finney MA, Cohen JD, Forthofer JM, et al. (2015) Role of buoyant flame dynamics in wildfire spread. Proc Natl Acad Sci USA 112:9833–9838. doi: 10.1073/pnas.1504498112 CrossRefGoogle Scholar
  108. 108.
    Rein G (2015) Breakthrough in the understanding of flaming wildfires. Proc Natl Acad Sci USA 112:9795–9796. doi: 10.1073/pnas.1512432112 CrossRefGoogle Scholar
  109. 109.
    Rehm R (2008) The effects of winds from burning structures on ground-fire propagation at the wildland-urban interface. Combust Theor Model 12:1–20. doi: 10.1080/13647830701843288 zbMATHCrossRefGoogle Scholar
  110. 110.
    Quarles SL (2012) Vulnerabilities of buildings to wildfire exposures. pp 1–13.
  111. 111.
    Koo E, Linn RR, Pagni PJ, Edminster CB (2012) Modelling firebrand transport in wildfires using HIGRAD/FIRETEC. Int J Wildland Fire 21:396. doi: 10.1071/WF09146 CrossRefGoogle Scholar
  112. 112.
    113. Vodvarka F (1969) Firebrand field studies—Final report. Illinois Institute of Technology Research Institute, ChicagoGoogle Scholar
  113. 113.
    114. Vodvarka F (1970) Ubran burns—full-scale field studies—final report. Illinois Institute of Technology. ChicagoGoogle Scholar
  114. 114.
    Waterman T (1969) Experimental study of firebrand generation. Illinois Institute of Technology. ChicagoGoogle Scholar
  115. 115.
    Clements HB (1977) Lift-off of Forest Firebrands. USDA Forest Service SE-159. Asheville, North CarolinaGoogle Scholar
  116. 116.
    Ellis PF (2000) The aerodynamic and combustion characteristics of eucalypt bark. A firebrand study.
  117. 117.
    Woycheese J., Pagni PJ (1998) Brand lofting in large fire plumes. Building and Fire Research Laboratory, National Institute of Standards of Technology.Google Scholar
  118. 118.
    Pagni P, Woycheese JP (2000) Fire Spread by Brand Spotting. In: Bryner NP (ed) U.S./Japan Government Cooperative Program Natural Resources (UJNR). Fire Res Safety. 15th Joint Panel Meet, vol 2. San Antonio, TX, pp 373–380Google Scholar
  119. 119.
    Yoshioka H, Hayashi Y, Masuda H, Noguchi T (2004) Real-scale fire wind tunnel experiment on generation of firebrands from a house on fire. Fire Sci Technol 23:142–150. doi: 10.3210/fst.23.142 CrossRefGoogle Scholar
  120. 120.
    Manzello SL, Maranghides A, Shields JR, et al. (2009) Mass and size distribution of firebrands generated from burning Korean pine (Pinus koraiensis) trees. Fire Mater 33:21–31. doi: 10.1002/fam.977 CrossRefGoogle Scholar
  121. 121.
    Manzello SL, Maranghides A, Mell WE (2007) Firebrand generation from burning vegetation. Int J Wildland Fire 16:458–462. doi: 10.1071/WF06079 CrossRefGoogle Scholar
  122. 122.
    Suzuki S, Manzello SL, Hayashi Y (2013) The size and mass distribution of firebrands collected from ignited building components exposed to wind. Proc Combust Inst 34:2479–2485. doi: 10.1016/j.proci.2012.06.061 CrossRefGoogle Scholar
  123. 123.
    Suzuki S, Brown A, Manzello SL, et al. (2014) Firebrands generated from a full-scale structure burning under well-controlled laboratory conditions. Fire Safety J 63:43–51. doi: 10.1016/j.firesaf.2013.11.008 CrossRefGoogle Scholar
  124. 124.
    Suzuki S, Manzello SL, Lage M, Laing G (2012) Firebrand generation data obtained from a full-scale structure burn. Int J Wildland Fire 21:961–968. doi: 10.1071/WF11133 CrossRefGoogle Scholar
  125. 125.
    Rissel S, Ridenour K (2012) Ember production during the bastrop complex fire. Fire Manag Today 72(4):7–13.Google Scholar
  126. 126.
    Manzello SL, Foote EID (2014) Characterizing firebrand exposure from wildland–urban interface (WUI) fires: results from the 2007 Angora fire. Fire Technol 50:105–124. doi: 10.1007/s10694-012-0295-4 CrossRefGoogle Scholar
  127. 127.
    Zhou K, Suzuki S, Manzello SL (2015) Experimental study of firebrand transport. Fire Technol 51:785–799. doi: 10.1007/s10694-014-0411-8 CrossRefGoogle Scholar
  128. 128.
    Tohidi A, Kaye N, Bridges W (2015) Statistical description of firebrand size and shape distribution from coniferous trees for use in Metropolis Monte Carlo simulations of firebrand flight distance. Fire Safety J 77:21–35. doi: 10.1016/j.firesaf.2015.07.008 CrossRefGoogle Scholar
  129. 129.
    Pagni W (1999) Combustion Models for Wooden Brands. In: Proceedings of 3rd International Conference Fire Research Engineering SFPE. Washington, DC, pp 53–71Google Scholar
  130. 130.
    Foote E, Liu J, Manzello S (2011) Characterizing firebrand exposure during wildland urban interface fires. In: Proceedings of 12th International Conference Fire and Materials. Interscience Communications, London pp 479–492.Google Scholar
  131. 131.
    Murphy K, Rich T, Sexton T (2007) An Assessment of Fuel Treatment Effects on Fire Behavior, Suppression Effectiveness, and Structure Ignition on the Angora Fire. USDA R5-TP-025.
  132. 132.
    El Houssami M, Mueller E, Filkov A, et al. (2015) Experimental procedures characterising firebrand generation in wildland fires. Fire Technol. doi: 10.1007/s10694-015-0492-z Google Scholar
  133. 133.
    Manzello SL, Suzuki S, Hayashi Y (2012) Exposing siding treatments, walls fitted with eaves, and glazing assemblies to firebrand showers. Fire Safety J 50:25–34. doi: 10.1016/j.firesaf.2012.01.006 CrossRefGoogle Scholar
  134. 134.
    Barr BW, Ezekoye O (2013) Thermo-mechanical modeling of firebrand breakage on a fractal tree. Proc Combust Inst 34:2649–2656. doi: 10.1016/j.proci.2012.07.066 CrossRefGoogle Scholar
  135. 135.
    Muraszew A, Fedele JB, Kuby WC (1976) Investigation of Fire Whirls and Firebrands. USDA ATR-76(7509). El Segundo, CaliforniaGoogle Scholar
  136. 136.
    Luke RH, McArthur AG (1978) Bushfires in Australia. Australian Government Publishing Service, Canberra, AustraliaGoogle Scholar
  137. 137.
    Bunting SC, Wright HA (1974) Ignition capabilities of non-flaming firebrands. J Forest 72(10):646–649.Google Scholar
  138. 138.
    Muraszew A, Fedele JB, Kurby WC (1975) Firebrand Investigation. USDA ATR-75(7470)-1. El Segundo, CaliforniaGoogle Scholar
  139. 139.
    Muraszew A (1974) Firebrand Phenomena. USDA ATR-74(8165-01)-1. El Segundo, CaliforniaGoogle Scholar
  140. 140.
    Muraszew A, Fedele JB (1976) Statistical Model for Spot Fire Hazard. USDA ATR-77(7588)-1. El Segundo, CaliforniaGoogle Scholar
  141. 141.
    Muraszew A, Fedele JB, Kuby WC (1977) Trajectory of firebrands in and out of fire whirls. Combust Flame 30:321–324. doi: 10.1016/0010-2180(77)90081-5 CrossRefGoogle Scholar
  142. 142.
    Albini F (1979) Spot fire distance from burning trees: a predictive model. USDA INT-56.U.S. Intermountain Forest and Range Experiment StationGoogle Scholar
  143. 143.
    Albini FA (1981) Spot fire distance from isolated sources—extensions of a predictive model.
  144. 144.
    Albini F, Alexander ME, Cruz MG, Miguel G Cruz (2012) A mathematical model for predicting the maximum potential spotting distance from a crown fire. Int J Wildland Fire 21:609–627. doi: 10.1071/WF11020 CrossRefGoogle Scholar
  145. 145.
    Albini FA (1983) Potential spotting distance from wind-driven surface fires.
  146. 146.
    Chase CH (1981) Spot fire distance equations for pocket calculators. USDA INT-310. Intermountain Experiment StationGoogle Scholar
  147. 147.
    Morris GA (1987) A simple method for computing spotting distances from wind-driven surface fires.
  148. 148.
    Baum HR, McCaffrey BJ (1989) Fire induced flow field-theory and experiment. Fire Safety Sci 2:129–148. doi: 10.3801/IAFSS.FSS.2-129 CrossRefGoogle Scholar
  149. 149.
    Wang H-H (2009) Analysis on downwind distribution of firebrands sourced from a wildland fire. Fire Technol 47:321–340. doi: 10.1007/s10694-009-0134-4 CrossRefGoogle Scholar
  150. 150.
    Baum H, Atreya A (2014) A model for combustion of firebrands of various shapes. Fire Safety Sci 11:1353–1367. doi: 10.3801/IAFSS.FSS.11-1353 CrossRefGoogle Scholar
  151. 151.
    Ellis PFM (2013) Firebrand characteristics of the stringy bark of messmate (Eucalyptus obliqua) investigated using non-tethered samples. Int J Wildland Fire 22:642–651. doi: 10.1071/WF12141 CrossRefGoogle Scholar
  152. 152.
    Sardoy N, Consalvi J, Porterie B, Fernandez-Pello AC (2007) Modeling transport and combustion of firebrands from burning trees. Combust Flame 150:151–169. doi: 10.1016/j.combustflame.2007.04.008 CrossRefGoogle Scholar
  153. 153.
    Sardoy N, Consalvi JL, Kaiss a., et al. (2008) Numerical study of ground-level distribution of firebrands generated by line fires. Combust Flame 154:478–488. doi: 10.1016/j.combustflame.2008.05.006 CrossRefGoogle Scholar
  154. 154.
    Nielsen HJ, Tao LN (1965) The fire plume above a large free-burning fire. In: Proc Combust Inst pp 965–972Google Scholar
  155. 155.
    Lee S, Hellman JM (1970) Firebrand trajectory study using an empirical velocity-dependent burning law. Combust Flame 15:265–274.  10.1016/0010-2180(70)90006-4 CrossRefGoogle Scholar
  156. 156.
    Lee S-L, Hellman JM (1969) Study of firebrand trajectories in a turbulent swirling natural convection plume. Combust Flame 13:645–655.  10.1016/0010-2180(69)90072-8 CrossRefGoogle Scholar
  157. 157.
    Fernandez-Pello AC (1982) An analysis of the forced convective burning of a combustible particle. Combust Sci Technol 28:305–313. doi: 10.1080/00102208208952562 CrossRefGoogle Scholar
  158. 158.
    Tse SD, Fernandez-Pello AC (1998) On the flight paths of metal particles and embers generated by power lines in high winds—a potential source of wildland fires. Fire Safety J 30:333–356. doi: 10.1016/S0379-7112(97)00050-7 CrossRefGoogle Scholar
  159. 159.
    Anthenien RA, Tse SD, Carlosernandez-Pello A (2006) On the trajectories of embers initially elevated or lofted by small scale ground fire plumes in high winds. Fire Safety J 41:349–363. doi: 10.1016/j.firesaf.2006.01.005 CrossRefGoogle Scholar
  160. 160.
    Albini F (1983) Transport of firebrands by line thermals. Combust Sci Technol 32:277–288. doi: 10.1080/00102208308923662 CrossRefGoogle Scholar
  161. 161.
    Kinoshita CM, Pagni PJ, Beier RA (1981) Opposed flow diffusion flame extensions. Proc Combust Inst 18:1853–1860. doi: 10.1016/S0082-0784(81)80191-9 CrossRefGoogle Scholar
  162. 162.
    Himoto K, Tanaka T (2008) Development and validation of a physics-based urban fire spread model. Fire Safety J 43:477–494. doi: 10.1016/j.firesaf.2007.12.008 CrossRefGoogle Scholar
  163. 163.
    Cunningham P, Goodrick SL, Yousuff Hussaini M, Linn RR (2005) Coherent vortical structures in numerical simulations of buoyant plumes from wildland fires. Int J Wildland Fire 14:61–75. doi: 10.1071/WF04044 CrossRefGoogle Scholar
  164. 164.
    Cunningham P, Linn RR (2007) Numerical simulations of grass fires using a coupled atmosphere-fire model: dynamics of fire spread. J Geophys Res-Atmos 112:1–19. doi: 10.1029/2006JD007638 CrossRefGoogle Scholar
  165. 165.
    Hage KD (1961) On the dispersion of large particles from a 15-m source in the atmosphere. J Meteorol 18:534–539. doi: 10.1175/1520-0469(1961)018 CrossRefGoogle Scholar
  166. 166.
    Jones JC (1995) Improved calculations concerning the ignition of forest litter by hot particle ingress. J Fire Sci 13:350–356. doi: 10.1177/073490419501300502 CrossRefGoogle Scholar
  167. 167.
    Dowling VP (1994) Ignition of timber bridges in bushfires. Fire Safety J 22:145–168. doi: 10.1016/0379-7112(94)90070-1 CrossRefGoogle Scholar
  168. 168.
    Manzello SL, Cleary TG, Shields JR, Yang JC (2006) Ignition of mulch and grasses by firebrands in wildland–urban interface fires. Int J Wildland Fire 15(3):427–431. doi: 10.1071/WF06031 CrossRefGoogle Scholar
  169. 169.
    Manzello S, Shields J, Hayashi Y, Nii D (2008) Investigating the vulnerabilities of structures to ignition from a firebrand attack. Fire Safety Sci 9:143–154. doi: 10.3801/IAFSS.FSS.9-143 CrossRefGoogle Scholar
  170. 170.
    Manzello SL, Park S-H, Cleary TG (2009) Investigation on the ability of glowing firebrands deposited within crevices to ignite common building materials. Fire Safety J 44:894–900. doi: 10.1016/j.firesaf.2009.05.001 CrossRefGoogle Scholar
  171. 171.
    Ellis PFM (2015) The likelihood of ignition of dry-eucalypt forest litter by firebrands. Int J Wildland Fire 24:225–235. doi: 10.1071/WF14048 Google Scholar
  172. 172.
    Santamaria S, Kempná K, Thomas JC, et al. (2015) Investigation of structural wood ignition by firebrand accumulation. In: First international conference on structures safety under fire blast. Glasgow, UK, pp 1–13Google Scholar
  173. 173.
    Ganteaume A, Guijarro M, Jappiot M, et al. (2011) Laboratory characterization of firebrands involved in spot fires. Ann For Sci 68:531–541. doi: 10.1007/s13595-011-0056-4 CrossRefGoogle Scholar
  174. 174.
    Rein G (2009) Smouldering combustion phenomena in science and technology. Int Rev Chem Eng 1:3–18.
  175. 175.
    Urbas J, Parker WJ, Luebbers GE (2004) Surface temperature measurements on burning materials using an infrared pyrometer: accounting for emissivity and reflection of external radiation. Fire Mater 28:33–53. doi: 10.1002/fam.844 CrossRefGoogle Scholar
  176. 176.
    Stokes A (1990) Fire ignition by copper particles of controlled size. J Electr Electron Eng Aust 10(3):188–194.Google Scholar
  177. 177.
    Hadden RM, Scott S, Lautenberger C, Fernandez-Pello C (2010) Ignition of Combustible Fuel Beds by Hot Particles: An Experimental and Theoretical Study. Fire Technol 47:341–355. doi: 10.1007/s10694-010-0181-x CrossRefGoogle Scholar
  178. 178.
    Gol’dshleger U, Pribytkova K, Barzykin V (1973) Ignition of a condensed explosive by a hot object of finite dimensions. Combust Explo Shock 9(1):99–102.
  179. 179.
    Thomas PH (1964) A comparison of some hot spot theories. Combust Flame 9(4):369–372. doi: 10.1016/0010-2180(65)90025-8 CrossRefGoogle Scholar
  180. 180.
    Manzello SL, Suzuki S (2014) exposing decking assemblies to continuous wind-driven firebrand showers. 11th International Symposium on Fire Safety Science.
  181. 181.
    Finney MA, McAllister SS, Maynard TB, Grob IJ (2015) A study of wildfire ignition by rifle bullets. Fire Technol. doi: 10.1007/s10694-015-0518-6 Google Scholar
  182. 182.
    Jolly WM, Mcallister S, Finney MA, Hadlow A (2010) Time to ignition is influenced by both moisture content and soluble carbohydrates in live Douglas fir and Lodgepole pine needles. Proc. VI Int. Conf. For. Fire Res.Google Scholar
  183. 183.
    Jolly WM, Parsons RA, Hadlow AM, et al. (2012) Relationships between moisture, chemistry, and ignition of Pinus contorta needles during the early stages of mountain pine beetle attack. Forest Ecol Manag 269:52–59. doi: 10.1016/j.foreco.2011.12.022 CrossRefGoogle Scholar
  184. 184.
    Viegas DX, Almeida M, Raposo J, et al. (2012) Ignition of mediterranean fuel beds by several types of firebrands. Fire Technol. doi: 10.1007/s10694-012-0267-8 Google Scholar
  185. 185.
    Wang S, Huang X, Chen H, et al. (2015) Ignition of low-density expandable polystyrene foam by a hot particle. Combust Flame 162(11):4112–4118. doi: 10.1016/j.combustflame.2015.08.017 CrossRefGoogle Scholar
  186. 186.
    Manzello SL, Suzuki S, Hayashi Y (2012) Enabling the study of structure vulnerabilities to ignition from wind driven firebrand showers: A summary of experimental results. Fire Safety J 54:181–196. doi: 10.1016/j.firesaf.2012.06.012 CrossRefGoogle Scholar
  187. 187.
    Zak C, Urban J, Tran VI, Fernandez-pello C (2014) Flaming ignition behavior of hot steel and aluminum spheres landing in cellulose fuel beds. Fire Safety Sci 11:1368–1378. doi: 10.3801/IAFSS.FSS.11-1368 CrossRefGoogle Scholar
  188. 188.
    Tolhurst K, Duff T, Chong D (2014) Using fire simulations to assess house vulnerability at the urban interface. Fire Note, Bushfire CRC pp 1–4.
  189. 189.
    Lautenberger C (2015) Wildland fire hazard modeling tools (WFHMT). Accessed 3 Oct 2015
  190. 190.
    State of California: CALFIRE (2015) California Fire Hazard Severity Zone Model Map Update Project. Accessed 3 Oct 2015
  191. 191.
    Porterie B, Consalvi J-L, Loraud J-C, et al. (2007) Dynamics of wildland fires and their impact on structures. Combust Flame 149:314–328. doi: 10.1016/j.combustflame.2006.12.017 CrossRefGoogle Scholar
  192. 192.
    State of California (2012) California building code: materials and construction methods for exterior wildfire exposure.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sara E. Caton
    • 1
    • 2
  • Raquel S. P. Hakes
    • 1
  • Daniel J. Gorham
    • 3
  • Aixi Zhou
    • 4
  • Michael J. Gollner
    • 1
    Email author
  1. 1.Department of Fire Protection EngineeringUniversity of MarylandCollege ParkUSA
  2. 2.Fire Research Division, Engineering LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Fire Protection Research FoundationQuincyUSA
  4. 4.Department of Engineering Technology and Construction ManagementUniversity of North Carolina at CharlotteCharlotteUSA

Personalised recommendations