Fire Technology

, Volume 53, Issue 1, pp 249–281 | Cite as

Determination of Separation Distances Inside Large Buildings

  • Marcos Chaos


In this study, an analytical framework is developed to determine the hazards posed by an uncontrolled fire burning indoors. This scenario, unlike unconfined outdoor fires, has received little attention in the literature and associated engineering methods for risk evaluation are unavailable. The present analyses are limited to overventilated fires burning in large non-combustible buildings. Hazards are evaluated on the basis of thermal radiation and firebrand transport. Thermal radiation is assessed using a solid flame radiation model; transport of firebrands is evaluated taking into consideration the convective ceiling layer established by the fire plume. Given the considerably different geometry of the scenario of interest herein, as compared to unconfined fires, efforts are placed in developing a rigorous physical and mathematical approach so as to make the developed methodology sufficiently general. The model derived is validated against limited heat flux data obtained for free-burn fires (up to 50 MW) involving Class 2 commodity rack storage arrays. In addition, general trends are investigated using a hypothetical sample scenario. Results show that thermal radiation is the main phenomenon driving the hazards encountered in indoor fires; firebrand transport, due to ceiling confinement, presents a much lesser hazard.


Indoor fire Thermal radiation Firebrand transport Separation distance 



The author gratefully acknowledges the many helpful discussions and support of Dr. Yi Wang, Dr. Sergey Dorofeev, and Dr. Franco Tamanini of FM Global Research as well as Mr. Michael Daly and Mr. John LeBlanc of FM Global Engineering Standards. Dr. Jaap de Vries is acknowledged for making available unpublished heat flux data associated with Reference [45]. In addition, Dr. Sayaka Suzuki and Dr. Samuel Manzello are thanked for graciously providing data used in the present study for the evaluation of firebrand transport.


  1. 1.
    Law M (1960) Radiation from fires and building separation. Fire Research Station, Fire Research Note No. 437Google Scholar
  2. 2.
    Moysey EB (1965) Space separation for prevention of farm fire spread. Fire Technol 1:62–68. doi: 10.1007/BF02588445 CrossRefGoogle Scholar
  3. 3.
    McGuire JH (1965) Fire and the spatial separation of buildings. Fire Technol 1:278–287. doi: 10.1007/BF02588470 CrossRefGoogle Scholar
  4. 4.
    Mudan KS (1984) Thermal radiation hazards from hydrocarbon pool fires. Prog Energy Combust Sci 10:59–80. doi: 10.1016/0360-1285(84)90119-9 CrossRefGoogle Scholar
  5. 5.
    Alpert RL (1998) Separation distances for yard storage fires. Technical Report J.I. 0D0E2.MT, Factory Mutual Research CorporationGoogle Scholar
  6. 6.
    Davis BC, Bagster DF (1989) The computation of viewfactors of fire models: 1. Differential targets. J Loss Prev Proc Ind 2:224–234. doi: 10.1016/0950-4230(89)80037-3 CrossRefGoogle Scholar
  7. 7.
    Orloff L, de Ris JL (1982) Froude modeling of pool fires. Proc Combust Inst 19:885–895. doi: 10.1016/S0082-0784(82)80264-6 CrossRefGoogle Scholar
  8. 8.
    de Ris JL, Orloff L (2005) Flame heat transfer between parallel panels. Fire Saf Sci 8:999–1010. doi: 10.3801/IAFSS.FSS.8-999 CrossRefGoogle Scholar
  9. 9.
    Xin Y (2014) Estimation of chemical heat release rate in rack storage fires based on flame volume. Fire Saf J 63:29–36. doi: 10.1016/j.firesaf.2013.11.004 CrossRefGoogle Scholar
  10. 10.
    de Ris JL (2013) Mechanism of buoyant turbulent diffusion Flames. Procedia Eng 62:13–27. doi: 10.1016/j.proeng.2013.08.040 CrossRefGoogle Scholar
  11. 11.
    de Ris JL, Wu PK, Heskestad G (2000) Radiation fire modeling. Proc Combust Inst 28:2751–2759. doi: 10.1016/S0082-0784(00)80696-7 CrossRefGoogle Scholar
  12. 12.
    Hu L, Zhang X, Wang Q, Palacios A (2015) Flame size and volumetric heat release rate of turbulent buoyant jet diffusion flames in normal- and a sub-atmospheric pressure. Fuel 15:278–287. doi: 10.1016/j.fuel.2015.01.081 CrossRefGoogle Scholar
  13. 13.
    Koseki H (2000) Large scale pool fires: results of recent experiments. Fire Saf Sci 6:115–132. doi: 10.3801/IAFSS.FSS.6-115 CrossRefGoogle Scholar
  14. 14.
    Marsden JE, Tromba A (2011) Vector calculus, 6th edn. W.H. Freeman & Company, New YorkzbMATHGoogle Scholar
  15. 15.
    Jost J (2008) Riemannian geometry and geometric analysis, 5th edn. Springer, BerlinzbMATHGoogle Scholar
  16. 16.
    Chandrupatla TR, Osler TJ (2010) The perimeter of an ellipse. Math Sci 35:122–131MathSciNetzbMATHGoogle Scholar
  17. 17.
    Seeger PG (1974) Untersuchung der wärmeübertragung durch strahlung von einem brennenden objekt auf die umgebung. AGF-Forschungsbericht, Nr 22Google Scholar
  18. 18.
    Hägglund B, Persson LE (1974) An experimental study of the radiation from wood flames. Försvarets Forskningsanstalt, Report FOA C 4589-D6(A3), StockholmGoogle Scholar
  19. 19.
    Hägglund B, Persson LE (1976) The heat radiation from petroleum fires. Försvarets Forskningsanstalt, Report FOA C 20126-D3(A3), StockholmGoogle Scholar
  20. 20.
    Tiezzi I, Irace A, Amato G (1977) Sperimentazione e ricerca applicata sullestinzione con liquidi schiumogeni e su problemi dirraggiamento termico in incendi di combustibili liquidi. Antincend 29:41–56Google Scholar
  21. 21.
    Japan Institute for Safety Engineering (1982) Report on burning of petroleum fires. TokyoGoogle Scholar
  22. 22.
    Göck D, Fiala R, Zhang X, Schönbucher A (1992) Das experimentell validierte ballen-strahlungsmodell osramo, teil 1: Theoretische grundlagen. Tech Überwach 33:137–140Google Scholar
  23. 23.
    Muñoz M, Planas E, Ferrero F, Casal J (2007) Predicting the emissive power of hydrocarbon pool fires. J Hazard Mater 144:725–729. doi: 10.1016/j.jhazmat.2007.01.121 CrossRefGoogle Scholar
  24. 24.
    Mudan KS, Croce PA (1995) Fire hazard calculations for large open hydrocarbon fires. Chapter 3-11. In: DiNenno PJ, Beyler CL, Custer RLP, Walton WP, Watts JM Jr, Drysdale D, Hall JR Jr (eds) SFPE handbook of fire protection engineering, 2nd edn. National Fire Protection Association, QuincyGoogle Scholar
  25. 25.
    Fuss SP, Hamins A (2002) An estimate of the correction applied to radiant flame measurements due to attenuation by atmospheric CO\(_{2}\) and H\(_{2}\)O. Fire Saf J 37:181–190. doi: 10.1016/S0379-7112(01)00032-7 CrossRefGoogle Scholar
  26. 26.
    Siegel R, Howell JR (2002) Thermal radiation heat transfer, 4th edn. Taylor & Francis, New YorkGoogle Scholar
  27. 27.
    Hamilton DC, Morgan WR (1952) Radiant-interchange configuration factors. NASA Technical Note 2836Google Scholar
  28. 28.
    Law M (1966) Configuration factor for a triangular radiator. Fire Research Station, Fire Research Note No. 625Google Scholar
  29. 29.
    Chung BTF, Kermani MM, Naraghi MHN (1984) A formulation of radiation view factors from conical surfaces. AIAA J 22:429–436. doi: 10.2514/3.48465 CrossRefGoogle Scholar
  30. 30.
    Woycheese JP, Pagni PJ, Liepmann D (1999) Brand propagation from large-scale fires. J Fire Prot Eng 10:32–44. doi: 10.1177/104239159901000203 CrossRefGoogle Scholar
  31. 31.
    Anthenien RA, Tse SD, Fernández-Pello AC (2006) On the trajectories of embers initially elevated or lofted by small scale ground fire plumes in high winds. Fire Saf J 41:349–363. doi: 10.1016/j.firesaf.2006.01.005 CrossRefGoogle Scholar
  32. 32.
    Koo E, Pagni PJ, Weise DR, Woycheese JP (2010) Firebrands and spotting ignition in large-scale fires. Int J Wildl Fire 19:818–843. doi: 10.1071/WF07119 CrossRefGoogle Scholar
  33. 33.
    Koo E, Linn RR, Pagni PJ, Edminster CB (2012) Modelling firebrand transport in wildfires using HIGRAD/FIRETEC. Int J Wildl Fire 21:396–417. doi: 10.1071/WF09146 CrossRefGoogle Scholar
  34. 34.
    Kung H-C, You H-Y, Spaulding RD (1999) Ceiling flows of growing rack storage fires. Proc Combust Inst 21:121–128. doi: 10.1016/S0082-0784(88)80238-8 CrossRefGoogle Scholar
  35. 35.
    Heskestad G, Hamada T (1993) Ceiling jets of strong fire plumes. Fire Saf J 21:69–82. doi: 10.1016/0379-7112(93)90005-B CrossRefGoogle Scholar
  36. 36.
    Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans Camb Philos Soc Part II 9:8–106Google Scholar
  37. 37.
    Oseen CW (1910) Über die Stokes’sche formel und über die verwandte aufgabe in der hydrodynamic. Ark Mat Astronom Fys 6:29Google Scholar
  38. 38.
    Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic Press, New YorkGoogle Scholar
  39. 39.
    White FM (2003) Fluid mechanics, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  40. 40.
    Whitaker S (1972) Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE J 18:361–371. doi: 10.1002/aic.690180219 CrossRefGoogle Scholar
  41. 41.
    Lemmon EW, McLinden MO, Friend DG (2012) Thermophysical properties of fluid systems. In: Linstrom PJ, Mallard WG (eds) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg.
  42. 42.
    You H-Z, Kung H-C (1984) Strong buoyant plumes of growing rack storage fires. Proc Combust Inst 20:1547–1554. doi: 10.1016/S0082-0784(85)80649-4 CrossRefGoogle Scholar
  43. 43.
    Heskestad G (1981) Peak gas velocities and flame heights of buoyancy-controlled turbulent diffusion flames. Proc Combust Inst 18:951–960. doi: 10.1016/S0082-0784(81)80099-9 CrossRefGoogle Scholar
  44. 44.
    FM Global (2015) Commodity classification. FM Global Loss Prevention Data Sheet 8-1.
  45. 45.
    Ren N, de Vries J, Meredith KV, Chaos M, Wang Y (2015) FireFOAM modeling of standard Class 2 commodity rack storage fires. In: Proceedings of the Fire and Materials 2015 Conference, 2–4 February, 2015, San Francisco, CA, pp. 340–356Google Scholar
  46. 46.
    Tewarson A (2002) Generation of heat and chemical compounds in fires, chapter 3-4. In: DiNenno PJ, Drysdale D, Beyler CL, Walton WD, Custer RLP, Hall JR Jr (eds) SFPE handbook of fire protection engineering, 3rd edn. National Fire Protection Association, QuincyGoogle Scholar
  47. 47.
    Suzuki S, Brown A, Manzello SL, Suzuki J, Hayashi Y (2014) Firebrands generated from a full-scale structure burning under well-controlled laboratory conditions. Fire Saf J 63:43–51. doi: 10.1016/j.firesaf.2013.11.008 CrossRefGoogle Scholar
  48. 48.
    Chaos M, Khan MM, Krishnamoorthy N, de Ris JL, Dorofeev SB (2011) Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests. Proc Combust Inst 33:2599–2606. doi: 10.1016/j.proci.2010.07.018 CrossRefGoogle Scholar
  49. 49.
    McKinnon MB, Stoliarov SI, Witkowski A (2013) Development of a pyrolysis model for corrugated cardboard. Combust Flame 160:2595–2607. doi: 10.1016/j.combustflame.2013.06.001 CrossRefGoogle Scholar
  50. 50.
    Frenkel M, Chirico RD, Diky V, Muzny CD, Kazakov AF, Lemmon EW (2008) NIST ThermoData Engine, NIST Standard Reference Database Number 103, Version 2.1. National Institute of Standards and Technology, GaithersburgGoogle Scholar
  51. 51.
    Ohlemiller TJ (2002) Smoldering combustion, chapter 2-9. In: DiNenno PJ, Drysdale D, Beyler CL, Walton WD, Custer RLP, Hall JR Jr, Watts JM Jr (eds) SFPE handbook of fire protection engineering, 3rd edn. National Fire Protection Association, QuincyGoogle Scholar
  52. 52.
    Hadden RM, Scott S, Lautenberger C, Fernández-Pello AC (2011) Ignition of combustible fuel beds by hot particles: an experimental and theoretical study. Fire Technol 47:341–355. doi: 10.1007/s10694-010-0181-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Research DivisionFM GlobalNorwoodUSA

Personalised recommendations